
Internet of Things Set

www.brickrknowledge.de

Experimental kit by Brick'R'knowledge
Experimentierkasten von Brick'R'knowledge

EUR/USD
1.0558

IoT Brick

7-Segment Sensor Adapter 3x

Imprint
Brick'R'knowledge Internet of Things Set manual
Rev. 1.0
Date: 27.07.2017

ALLNET® and Brick'R'knowledge® are registered trademarks of ALLNET® GmbH Computersysteme.

ALLNET® GmbH Computersysteme
Brick'R'knowledge
Maistraße 2
D-82110 Germering

© Copyright 2017 ALLNET GmbH Computer systems. All rights reserved.

All information contained in this manual has been compiled with the utmost care and to the best of our knowledge.
Nevertheless, mistakes can not be completely ruled out. We are always grateful for the communication of possible
errors. Please send this to info@brickrknowledge.de.

BRK_IoT_Set_HB_de_Rev. 1.0

Table of contents
1. Safety instructions ��� 5

2. What does "Internet of Things" mean? �� 6

3. Basics of the Brick'R'knowledge system ��� 7
3.1 Ground brick ��� 7

3.2 Power supply �� 7

3.3 Connectors �� 8

3.4 Special connector brick for lower level ��� 8

4. Hardware overview �� 9

5. The IoT brick and the Arduino IDE ��� 13
5.1 The core of the Internet of Things set ��� 13

5.1.1 Specifications of the IoT brick �� 13

5.1.2 The GPIO pins of the IoT brick ��� 14

5.1.3 Pull-up resistors ��� 14

5.2 The Arduino IDE ��� 15

5.2.1 Installing libraries �� 16

5.2.1.1 Installing Arduino libraries ��� 17

5.2.1.1.1 Library "NTPClient" ��� 17

5.2.1.1.2 Library "Time" �� 17

5.2.1.1.3 Library "Json Streaming Parser" �� 18

5.2.1.1.4 Library "DHT Sensor Library" ��� 18

5.2.1.1.5 Library "Adafruit Unified Sensor" ��� 18

5.2.1.2 Installing external libraries ��� 18

5.2.1.2.1 Library "esp8266-oled-ssd1306-master" �� 19

5.2.1.2.2 Library "MCP3421" �� 19

5.2.1.2.3 Library "BrickESP8266" �� 19

5.2.2 Virtual COM port driver ��� 20

5.2.3 Serial monitor ��� 20

5.3 First steps �� 21

5.3.1 Establishing a connection ��� 21

5.3.2 Compiling and uploading code ��� 22

5.3.3 Programming mode �� 22

6. Examples �� 23
6.1 "Hello World" (blinking-LED) �� 23

6.2 Switch and LED �� 24

6.3 I2C-Bus ��� 25

6.3.1 The 7-segment display �� 26

6.3.2 7-segment display as I²C brick - structure and addresses ��� 27

6.3.3 7-segment display as counter �� 29

6.3.4 7-segement display with button debouncing ��� 30

6.4 OLED display - basics ��� 32

6.4.1 OLED display - displaying text �� 33

6.5 Analogue inputs �� 35

6.5.1 A/D converter - basics �� 35

6.5.2 The A/D converter on the IoT brick �� 37

6.5.2.1 The 10bit A/D converter �� 37

6.5.2.2 The 18bit A/D converter �� 37

6.5.2.3 Voltage divider �� 37

6.5.2.4 Practical tip �� 38

6.5.2.5 Binary coding ��� 38

4

6.5.3 A/D converter 10bit �� 39

6.5.4 A/D converter 18bit �� 41

6.6 IoT examples �� 43

6.6.1 Setting up IoT brick as WLAN client ��� 44

6.6.2 Time from the internet �� 46

6.6.3 Measuring temperature and humidity ��� 48

6.6.4 Dollar rate from the internet ��� 50

6.6.5 My first website ��� 52

6.6.6 Switching via website �� 55

7. Brick Community ��� 60

8. Brick sets overview ��� 63

Safety information 5

Foreword
The Brick'R'knowledge experimentation system was presented for
the first time at the HAM radio exhibition on 28.06.2014 by Rolf-
Dieter Klein (Amateurfunkzeichen: DM7RDK). The special feature of
our electronics sets is that the individual components are connected
via a plug system, in which the parts to be assembled are identi-
cal (Hermaphrodite). Thus, even tricky circuits can be realized. Also
the putting together of the individual building blocks in different
angles is possible! Two contacts are available for the return of the
ground (0 volts)!

This makes it possible to build compact circuits in which the ground
return ensures a stable voltage supply for the devices. Another par-
ticular feature is that such circuits can be easily explained and do-
cumented.

Rolf-Dieter Klein

Downloads:
• Sample code and libraries for the exercises in this tutorial:

https://www.arduino.cc/en/Main/Software#

• Download Arduino development environment:
http://www.brickrknowledge.de/downloads

1. Safety information
Note: Never connect the bricks directly to the mains power supply (115V/230V). There might be danger to
life.

Please only use the included power supply-bricks. The voltage of our power-supply modules is 9V, which is
not a health hazard. Please also ensure, that no openly wires are in contact with the mains power outlets.
Otherwise there might be a danger of hazardous electric shocks. Never look straight into LEDs, since this
may damage your eye retina.

Please connect the included polarized capacitors (tantalum/electrolytic) only with the positive side to the
plus side of the power supply. If those polarized capacitors are connected not correctly, they can be dest-
royed and even explode!

Please remove the power supply brick everytime you finished expimenting, to avoid the risk af an electric
fire.

6 What is the "Internet of Things"?

2. What is the "Internet of Things"?
The Internet of Things (IoT) is the inter-networking of physical devices, vehicles (also referred to as "connec-
ted devices" and "smart devices"), buildings, and other items embedded with electronics, software, sensors,
actuators, and network connectivity which enable these objects to collect and exchange data. In 2013, the
Global Standards Initiative on Internet of Things (IoT-GSI) de� ned the IoT as "a global infrastructure for the
information society, enabling advanced services by interconnecting (physical and virtual) things based on
existing and evolving interoperable information and communication technologies," and for these purposes
a "thing" is "an object of the physical world (physical things) or the information world (virtual things), which
is capable of being identi� ed and integrated into communication networks.

(Source: https://de.wikipedia.org/wiki/Internet_der_Dinge)

Aha, now some readers will think, but what does that mean for me.

The Internet of things (IoT) is the inter-networking of physical devices, vehicles (also referred to as "connec-
ted devices" and "smart devices"), buildings, and other items embedded with electronics, software, sensors,
actuators, and network connectivity which enable these objects to collect and exchange data. In 2013, the
Global Standards Initiative on Internet of Things (IoT-GSI) defi ned the IoT as "a global infrastructure for the
information society, enabling advanced services by interconnecting (physical and virtual) things based on
existing and evolving interoperable information and communication technologies," and for these purposes
a "thing" is "an object of the physical world (physical things) or the information world (virtual things), which
is capable of being identifi ed and integrated into communication networks.

 Some examples of the Internet of Things:

• So-called wearables, with sensors incorporated into clothing pieces

• Building Automation

• Temperature monitoring in the server room

• Energy management, smart metering

• Video monitoring

... and last but not least the Brick'R'knowledge Internet of Things Set with which you can now access your
Bricks via the Internet.

First you will get an overview of the basics of the Brick'R'knowledge experimentation system. Then all the
bricks and sensors contained in this set are presented. A special feature of this set is the combination of soft-
ware and hardware. That is, we need a software to write programs, which brings the hardware to life. To
do this, we use the Arduino development environment, which can be downloaded free of charge. After all
preparations have been made, we can enter the world of the Internet of Things with numerous examples.

With the central IoT brick, you'll learn how to build your fi rst website and control I/O pins with your smart-
phone. In addition, the set contains a temperature and humidity sensor, which values you can display. The
fi rst step towards your own home automation project! You can also view and display data, such as the dol-
lar rate from the Internet. An I2C bus for connecting a 7-segment display or an 18-bit A/D converter is also
included!

The Internet of Things is waiting to be discovered by you!

Basics of the Brick'R'knowledge system 7

3. Basics of the Brick'R'knowledge system

3.1 Ground brick

One of the most important bricks is the so called ground brick. The ground brick has one connector with four
contacts. Usually the middle two contacts are used for signal or power connection. But the outer contacts
are intended for the so called ground level. Which means technically a level of 0V. The ground brick connects
the both inner contacts with the outer contacts. Therefore it is possible to allow for a current return fl ow
towards the 0V of a power supply invisible to the schematic symbols outside.

The power supply of course must also be connected at one pole (usually the minus pole) to the ground using
the ground brick. There is a power brick with an internal ground connection already done and visible in the
symbol, and also a battery brick, where both poles are open, and can be connected with a ground brick to
the ground level.

1kΩ
LED
red+-

9V 1A

Abb. 1: Ground fl ow

3.2 The power supply

The power supply for the IoT set is provided by the supplied 9 V
plug-in power supply (ALL-BRICK-0221). It provides a stabilized DC
voltage of 9 V and a maximum current of 1 A. In the event of an
overload, the power supply switches off, because it is short-circuit
proof. An LED indicates when the brick voltage is available.

Optionally, a supply brick is also available via a 9 V block battery
(ALL-BRICK-0001).

Abb. 2: Power supply adapter

 WIf you later put the bricks together in the practice examples, make sure you always plug the power
brick as the last brick to your circuit after checking it again. At the end of the experiment, the power
supply must be disconnected from the mains!

8 Basics of the Brick'R'knowledge system

3.3 The connectors

When the bricks are plugged in, take care that the contacts are connected properly, as there is a risk of in-
terruptions or even short-circuits!

 Inserted correctly Inserted incorrectly
Fig. 3: The connectors

In the left picture you see a correctly inserted connection. The connection consists in each case of small pins,
which mechanically jam while making an electrical connection. In order to ensure an insulation between the
contacts and to prevent a short circuit, there are little plastic webs inbetween, which do not conduct the
electrical current.

An example of a faulty connection is shown in the right figure. Here, insulating strips meet contacts so that
no current can flow. The circuit is "open" or unstable, and the circuit does not function.

Caution: It is important to always check the correct position of the contact pins. If these diverge too far
from each other, a short circuit may occur. Then the current flows through our components with the hoped-
for effect, but the shortest path returns to the voltage source.

A short circuit leads to the maximum current, since the only resistance that the electrical current must over-
come is the internal resistance of the voltage source. This resistance is clearly very small, so the short-circuit
current can lead to overheating over a longer period of time. There is a fire hazard!

 Important: Always check the correct position of the contacts!

3.4 Special connection bricks for lower level

The IoT brick also has a signal pin (GPIO12) on the lower pin plane. To get to
this contact there are optionally available special bricks like "line downside
up" (ALL-BRICK-0385) and "line 6-way straight " (ALL-BRICK-0383). A pro-
tective nose prevents the bricks fom above in order to avoid short circuits
during the plugging process.

The hardware at a glance 9

4. The hardware at a glance
The Internet of Things Set contains the following bricks, sensors and accessories, which are briefl y presented.

Illustration Quantity Art.-Nr. / Brick-ID Short description

+ -

9V1A

1 Art.-Nr.: 118627
Brick-ID: ALL-BRICK-0221

9 V power supply adapter
The 9 V mains adapter provides a maximum
current of 1 A for the bricks. It is stabilized and
protected against short circuits. An LED indica-
tes when it is in operation. The positive pole is
led out and the negative pole is connected to
ground. Use this brick as the last one after you
have checked the circuit again.

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

1 Art.-Nr.: 136716
Brick-ID: ALL-BRICK-0635

IoT Brick ESP8266
The heart of the IoT set. ESP8266 module with
WLAN interface, power supply: +9 V. 7 GPIOs, a
10 bit A / D converter, an 18 bit A / D converter,
I2C interface, SPI interface

For further details see chapter 5.1 on page 13.

1 Art.-Nr.: 139779
Brick-ID: ALL-BRICK-0659

OLED-Display for IoT Brick
Organic light-emitting diode monochrome.
Exactly, 128 x 64 LEDs are arranged in a matrix
and can be controlled individually by means of
commands through the I2C bus. This makes it
possible to display multiline texts, but also simp-
le monochrome graphics.
Standard I2C address: 78(16)

I²C 7-Segment-LED
SCL

SDA

SCL

SDA

+9VAdr:40,44,48,4C
PCF8574T

+9V

1 Art.-Nr.: 113713
Brick-ID: ALL-BRICK-0086

I2C 7-segment display
7-segment display consisting of 7 light bars and
one point. Behind it is a light-emitting diode. The
LEDs are controlled by means of two 8574T mo-
dules(16 output lines to LEDs). The I2C-address
can be set whit small switches on the back.
A maximum of four such devices can be opera-
ted on an I2C bus.

10 The hardware at a glance

Illustration Quantity Art.-Nr. / Brick-ID Short description

10kΩ

1 Art.-Nr.: 113654
Brick-ID: ALL-BRICK-0027

10 kΩ potentiometer
The potentiometer is a changeable resistor.
There are three connections. The tapper can be
changed mechanically and delivers a resistor size
between the smallest and biggest value at the
third clip. The potentiometer also has a maxi-
mum performance of 1/8 Watts if you connect
the tapper with the voltage source and one of
the other connectors..

LED

LED

1 Art.-Nr.: 125693
Brick-ID: ALL-BRICK-0410

Dual-LED to ground (red / yellow)
Two LEDs (red / yellow) are internally connected
to ground. The signal lines are interconnected
separately. Both LEDs are protected against
excessive current currents via a 2.2 kΩ series
resistor. They are designed for 2 mA current
at 5 V voltage. The two resistors are internally
grounded so that the module can be connected
directly.

1 Art.-Nr.: 113631
Brick-ID: ALL-BRICK-0004

Straight connector
The straight connector brick connects two oppo-
site bricks.

3 Art.-Nr.: 113632
Brick-ID: ALL-BRICK-0005

Corner Brick
You can connect your circuits with the corner
brick across the corner.

1 Art.-Nr.: 113633
Brick-ID: ALL-BRICK-0006

T-crossing Brick
With the T-crossing brick you can connect your
circuit's components like a "T".

The hardware at a glance 11

Illustration Quantity Art.-Nr. / Brick-ID Short description

1 Art.-Nr.: 113675
Brick-ID: ALL-BRICK-0048

Wire double crossed
With this module you can forward the middle
wires separately and cross at the same time.

1 Art.-Nr.: 113630
Brick-ID: ALL-BRICK-0003

Ground-Brick
Ground is responsible for leading and returning
voltage. Put the ground brick on the end of
each circuit in order to close it. It connects the
middle circuit with the two external ground
lines.

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

1 Art.-Nr.: 138408
Brick-ID: ALL-BRICK-0649

External sensor adapter triple
Supply voltage: +9 V..

ALLNET

+5V
GND
I/O

B24_1

1 Art.-Nr.: 139778
Brick-ID: ALL-BRICK-0658

Temperature & humidity sensor
Temperature & humidity sensor
Temperature/humidity sensor on PCB, Sensor
Type: DHT11, Temp.: 0.50 ° C (± 2 ° C),
rel. Humidity: 20..95% (± 5%), Power supply:
3-5,5V. Built-in pullup resistor

1 USB-cable
USB connection cable (plug type A to micro USB
connector type B) between the development
computer and IoT Brick.

12 The hardware at a glance

Optional recommended bricks

Downsi de
 UP

optional

Art.-Nr.: 122448
Brick-ID: ALL-BRICK-0385

Wire Downside Up
A special module for accessing the Pin GPIO12
pin of the lower IoT Bricks. In addition to the
contacts on the upper level, it also has four in-
dependent contacts on the bottom of the board.
These are then routed to the upper level at the
sides, where normal bricks can be used to get to
the signals.

optional

Art.-Nr.: 122446
Brick-ID: ALL-BRICK-0383

Wire 6-way straight
Line 6-way straight
The 6-fold straight line extends the four contacts
at the top (including the ground at the external
contacts) and the four signal lines at the lower
level which are independent of each other.

optional

Art.-Nr.: 125674
Brick-ID: ALL-BRICK-0407

Clamp 5-pole type 2
This allows wiring or components to be con-
nected to the circuit. Use a small screwdriver to
press the slot on the top. The contact then opens
and the cable can be inserted laterally. When the
screwdriver is released, the cable is secure. The
middle contact is connected to ground..

optional

Art.-Nr.: 137824
Brick-ID: ALL-BRICK-0642

Double switch
This brick contains 2 single-pole NO contacts.
This allows the inputs of gates or flipflops to be
conveniently connected. In addition, the signal
paths are connected separately from the upper
to the lower connection. Close the power supply
At the top and / or bottom connection, thus
saving many line bricks in many situations.

The IoT brick and the Arduino IDE 13

5. The IoT brick and the Arduino IDE

5.1 The core of the Internet of Things Set

The IoT brick is the core of the Brick'R'knowledge Internet of Things set. Its central component is the ESP 12 F
module by AI THINKER, consisting of a microcontoller type EsP8266 with integrated WLAN interface, a 4MB
fl ash memory and an internal WLAN antenna.

GPIO3
ADC

micro USB

18 bit

10 bitGPIO1
(Rx)

(10:1)

I2C, max 20V

(Tx) GPIO0 RESET int, max 10V

SDA SCL 5V GND

IoT Brick

GPIO5

+9V

GPIO14

GPIO13GPIO4
(SCL) (SCLK)

(MOSI)(SDA)

n.c.

GPIO12
(MISO)

Power LED (3,3 V ok)

Programming-LED (GPIO0)

Programming button– can be
retrieved also as GPI00

Reset button –Programm is
reset, meaning rebooted.

GPIO12 – This pin is situated on the lower plug
level (below GPI013). It is not accessible with the
IoT set's bricks. Please use the special brick "Wire
Downside Up

OLED-Display (128 x 64) – kann bei
Bedarf aufgesteckt werden

Fig. 4: The core of the Internet of Things set

5.1.1 Specifi cations of the IoT Brick

Element Specifi cation
Microcontroller 80 MHz Tensilica L106 Ultra-Low-Power 32 bit MCU
Flash memory 4 MByte for programs
WLAN-Interface IEEE 802.11 b / g / n protocol, IPv4, IP address: is assigned via DHCP, integrated TCP / IP stack, ISMBand

(2.4 GHz), supports WPA / WPA2 security modes, integrated antenna
GPIOs 7 GPIOs, standard function: digital in-/output, alternative functions: I2C- and SPI-bus

GPIO-autput level: +5 V; GPIO-input level: +5 V (the inputs are not 9V tolerant!)
Analogue inputs ADC 10 bit: 10 bit A / D internal converter (type: SAR converter), sampling rate: max. 200 S / s, input

voltage range: max. 10 V
ADC 18 bit: 18 bit A / D converter MCP3421 connected via I2C (type: Delta-Sigma converter), sampling
rate: max. 3.75 S / s, input voltage range: max. 20 V

Button required for programming modus (after starting the ESP8266, button GPIO0 can be used as ordinary
digital input.

Power supply 9 V supply (power LED at 3.3 V on board voltage)
Connections 1 x Brick connector for 9 V supply

4 x Brick connectors for a total of 7 GPIOs
1 x Brick connector for 2 analog inputs
Micro-USB socket (type B) as programming interface

Display I2C-OLED-display monochrome (128 x 64 pixels) plug in via 4 pin female header (included in the set)

14 The IoT brick and the Arduino IDE

5.1.2 The IoT brick's GPIO pins

Analogue and digital inputs and outputs are necessary for a microcontroller to exchange data. The digital
inputs and outputs are usually called GPIOs. GPIO is short for General Purpose Input/Output, meaning that
such a connection can be used as either in- or output - according to former configuration. In coding this
change of direction is called pinMode. The GPIOs voltage level complies with 5V for high level and 0V for
low level. Alternatively, some GPIO pins can assume special functions like the data communication via I2C- or
SPI-bus. To address the GPIO pin in your programm you need an index that you can take from the following
table:

Standard-Function Description alternative
function

Description
(See chap. 5.1.3)

Index for pro-
gramming

GPIO0 Index for programming - low: 40 kΩ, high: 4 kΩ 0
GPIO1 Digital-I/O 1 TxD low: 40 kΩ, high: 4 kΩ 1
GPIO3 Digital-I/O 3 RxD low: 40 kΩ, high: 4 kΩ 3
GPIO4 Digital-I/O 4 I2C SDA low: 40 kΩ, high: 4 kΩ 4
GPIO5 Digital-I/O 5 I2C SCL low: 40 kΩ, high: 4 kΩ 5

GPIO12** Digital-I/O 12 SPI MISO low: 40 kΩ, high: 4 kΩ 12
GPIO13 Digital-I/O 13 SPI MOSI low: 40 kΩ, high: 4 kΩ 13
GPIO14 Digital-I/O 14 SPI SCLK low: 40 kΩ, high: 4 kΩ 14

ADC0 (10 bit) 10 bit analog input (internal) - - 0
ADC1 (18 bit) 18 bit analog input (via I2C) - - (via I2C)

The GPIOs 2, 6, 7, 8, 9, 10, 11, 15 and 16 are not provided by the ESP-12-F module.
* See next chapter. ** Pin on lower plug level only accessible with optional special brick (art.-no .: 122448, Brick ID: ALL-BRICK-0385)

 Attention: Don't ever directly apply 9V to the GPIOs (for example, via a switch). Although you need
9V supply for the IoT brick and other active bricks, the GPIOs are designed for 5V level only. A GPIOs
voltage level of more than 5V can lead to irreversible damages of the bricks!

Pull-up resistors

It is important that inputs always have a defined level in digital circuits. By installing so called Pull-up or Pull-
down resistors, the input is transferred to high level (5V) or low level (0V). We use pull-up resistors with au-
tomatic impedance matching in our IoT brick. At low level the value is 40 kΩ (less current flows). At high level
the value is 4 kΩ (for the high level to be recognized). Hence, the input level on the GPIOs always is clearly
defined so that the logic level on a pinMode (GPIOx, INPUT_PULLUP) or pinMode(GPIOx, INPUT_PULLDOWN)
does not have any effect on the GPIO pins as the pull-up resistors are always active. After having started the
supply, GPIOs that were configurated as input are immediately converted to high level.

IoT Brick

GPIO1

GPIO14

Pullup

+5 V

+3,3 V

Bidirektionaler
Pegel-Konverter

High: 4 kΩ

Low: 40 kΩ
GPIOx

Fig. 5: Pull-up resistors

The IoT brick and the Arduino IDE 15

5.2 The Arduino integrated development environment

• To program the IoT brick we use the Arduino integrated development environment, also known as Ardu-
ino IDE. Many of you probably already know Arduino's free coding software. There are various Arduino
projects on the internet and there is a huge community for it. We use a number of open source libraries
in our examples in order to facilitate the programming of individual hardware components. There are
installers for Windows, Linux, MAC OS X and a Windows app. This instruction's descriptions and screens-
hots refer to the Windows version.

• Download the installer for the current Arduino IDE here: https://www.arduino.cc

• Start installing the Arduino IDE by double clicking on the downloaded EXE file.

• To program the ESP8266 based microcontroller module with this software, you also have to install the
respective core including some libraries. This is necessary as the Arduino IDE does not by default support
the ESP8266.

• Start the Arduino IDE, for example via the start menu in Windows (differs according to operating sys-
tem).

• Open the menu "Data - Presets" and add the following URL below "Additional board administrator
URLs": http://arduino.esp8266.com/stable/package_esp8266com_index.json

Fig. 7: Board administrator

• Confirm with OK.

• Open "Board administrator" in the menu "Tools Board:.."

Fig. 4: Board administrator

16 The IoT brick and the Arduino IDE

• Enter esp8266 in the search window. You should only see: "esp8266 by ESP8266 Community"

Fig. 5: Installation ESP8266 via board administrator

• Click on the entry and then click on "install". Installation can take some time.

• End the installation with "close"

• In the menu, choose "tools - board:...-"board administrator...".

• Choose the entry "Generic ESP8266 module". Once chosen, the menu below "board: ..." changes and dis-
plays various settings. Change them in such a way that they correspond to the screenshot (red triangle).

Fig. 8: Installation ESP8266 via board administrator

• Go on with the following chapter "Installing libraries...

5.2.1 Installing libraries

We use so called libraries in our example programs in order to simplify coding. These collections of coding
involve, for example, extensive tables that can define fonts or that encode 7 segment displays. Although
most of the libraries are delivered with the Arduino IDE, they still have to be installed. Other libraries need to
be downloaded from the internet and are usually integrated as ZIP files. Once you have installed all libraries
that were listed here, you are fully prepared and don't have to install anymore for the exercises.Usually, you
find your installed libraries in the follwing list on your PC: C:\Users\my_name\Documents\Arduino\libraries
(substitute my_name with your user name).

You find advise for installing additional Arduino libraries here: https://www.arduino.cc/en/Guide/Libraries

The IoT brick and the Arduino IDE 17

5.2.1.1 Installing Arduino libraries

• Installing Arduino libraries

Fig. 6: Bibliotheksverwalter

• Install the necessary libraries according to the following chapters. Limit the choice by using adequate
search terms (see followinig screenshots). In case a version selection is offered, you can usually install the
latest version. Click on the entry and then click on "install.

5.2.1.1.1 Library"NTPClient"

Fig 11: Installating library "NTPClientLib"

• Choose the library with the latest version and click on "install".

• The library is needed to obtain time and date via Network Time Protocol (NTP) from the internet.

5.2.1.1.2 Library "Time"

The library is needed to obtain time and date via Network Time Protocol (NTP) from the internet.

Fig. 12: Installation Library "Time"

• Choose the library with the latest version and click on "install".

• The header file is integrated with the instruction: #include <Time.h> and #include <TimeLib.h>.

5.2.1.1.3 Library "Json Streaming Parser"

The library is needed to obtain time and date via Network Time Protocol (NTP) from the internet.

Fig. 7: Installation library "Json Streaming Parser"

• The header file is integrated with the instruction: #include <Time.h> and #include

18 The IoT brick and the Arduino IDE

• <TimeLib.h>.

• The header files are integrated with the instructions #include <DHT.h> and #include <DHT_U.h>.

5.2.1.1.4 Library"DHT Sensor Library"

The library is needed to read temperature and humidity of sensor DHT11.

Fig. 8: Installing Library "DHT Sensor Library"

• Select the library with the latest version and click on "Install".

• The header files are included with the instructions #include <DHT.h> and #include <DHT_U.h>.

5.2.1.1.5 Library "Adafruit Unified Sensor"

The library is needed to read temperature and humidity of sensor DHT11.

Fig. 9: Installing library "Adafruit Unified Sensor"

• Choose the library with the latest version and click on "install".

• The header file is integrated with the instruction: #include <Adafruit_Sensor.h>.

5.2.1.2 Installing external libraries

• The same procedure applies for each library

• You need to download the necessary library from the internet. You find the respective download pages
in the following chapters.

• Open the menu "Sketch - integrate library - Add ZIP library...".

• Choose the downloaded ZIP file.

The IoT brick and the Arduino IDE 19

5.2.1.2.1 Library "esp8266-oled-ssd1306-master"

To simplify controlling the OLED display, we use the library "esp8266-oled-ssd1306-master". You can down-
load it from the GitHub page as a ZIP file.

Go to: https://github.com/squix78/esp8266-oled-ssd1306. Below "Clone or download" choose the option
"Download Z

 Fig. 16: Installing library "esp8266-oled-ssd1306-master"

• Install the library via the menu "Sketch - include library - add ZIP library"

• The header file is integrated with the instruction: #include <SSD1306Wire.h>.

5.2.1.2.2 Library "MCP3421"

To simplify communication with the 18 bit A/D-converter MCP3421, we use the library "MCP3421". It can be
downloaded as a ZIP file.

• Folow the link: http://interface.khm.de/index.php/lab-log/connect-a-mcp3421-18-bit-analog-to-digital-
converter-to-an-arduino-board/. Below "Library download" at the end of this website you will find the
link for the necessary library.

• Download the file MCP3421.zip and save it on your PC.

• Install the library via the menu "Sketch - Include library - add ZIP library".

• The header file is integrated with the instruction: #include <MCP3421.h>.

5.2.1.2.3 Library "BrickESP8266"

The library is needed, among other things, to retrieve the current US dollar exchange from the internet. It
can be downloaded as ZIP file.

• Folow the link: http://www.brickrknowledge.de/downloads.

• Download the file BrickESP8266.zip and save it on your PC.

• Install the library via the menu "Sketch - Include library - add ZIP library".

• The header file is included with the instruction: #include <CurrencylayerClient.h>.

In case a library is missing, it will be indicated by an error report while compiling:

In case you haven't installed the driver for the USB-to-UART-bridge, please continue with 5.2.2.

20 The IoT brick and the Arduino IDE

5.2.2 Virtual COM-Port-Driver

For your development computer to communicate with the IoT brick, you need to select your PC's interface in
the Arduino IDE to establish the connection to the IoT brick. For this, you can select a serial port (also called
COM port) in the Arduino IDE. Typically, these are RS-232-ports but in modern computers they are hardly to
be found. Instead, we use a free USB port of your computer and lead the Arduino IDE to believe in it being a
serial port. We have to install a virtual COM-port.driver in order to make this clear to the operating system.
This is a requirement for the communication between Arduino IDE and the USB port of the IoT brick.

• Download the current driver for your operating system (Windows, MAC OS X, Linux) from the Silicon
Labs

• https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

Fig. 18: Screenshot of the download page including a link for current Windows versions

• Unpack the packed file on your PC.

• Start installation by double clicking. According to the Windows version you need to start the respective
installer: CP210xVCPInstaller_x86.exe for a 32 bit Windows version or CP210xVCPInstaller_x64.exe for a
64 bit version.

• In the Windows device manager below "Connectors (COM & LPT)" .

• In the Windows device manager below "Connectors (COM & LPT)".The number of COM ports and the
index depend on your PC's configuration.

Fig. 19: Virtual COM port in the device manager

5.2.3 Serial monitor

Some sample programs use the so called serial monitor to directly display values and notifications at the
development computer. Click on the magnifier icon in the Arduino IDE to open the serial monitor. The baud
rate in the monitor window (downright) and in the sketch need to be consistent (see Fig. 20).

Fig. 20: Issue data on a serial monitor

The IoT brick and the Arduino IDE 21

5.3 First steps

Now it's getting exciting! After having installed the Arduino IDE including the libraries and the virtual COM
port driver, you will start operating.

5.3.1 Establish connection

Connect the IoT brick with the enclosed 9V power supply at the upper port (see Fig. 21).

 Caution: Don't ever connect the 9V supply to the other IoT brick's contacts as this
could destroy the brick!

Connect your development computer and the IoT brick (Micro USB port) with the included USB cable.

GPIO3
ADC

micro USB

18 bit

10 bitGPIO1
(Rx)

(10:1)

I2C, max 20V

(Tx) GPIO0 RESET int, max 10V

SDA SCL 5V GND

IoT Brick

GPIO5

+9V

GPIO14

GPIO13GPIO4
(SCL) (SCLK)

(MOSI)(SDA)

n.c.

GPIO12
(MISO)

+
-

9V
1A

Caution!
Connect the 9V supply exclu-
sively to the IoT brick's upper
contact. Otherwise, the brick
could be destroyed!

The red LED signals ope-
rational readiness.

Fig. 21: Basic connection of the IoT brick
The computer should have a new, so called virtual COM port now via that the Arduino IDE loads the pro-
grams on the IoT brick. You can easily work out the COM port's index via the Arduino IDE.

• First, disconnect the USB cable from the IoT brick.

• Start the Arduino software and examine which COM port(s) are displayed below "tools - port:...".

• Connect the USB cable with the IoT brick again. Below "tools - port:.." you should see an additional COM
port. Select this port. In case this should not be possible, uninstall the COM port in the device manager
and reinstall the "CP210x USB to UART Bridge" driver. Compare ch. 5.2.2. on page 20.

Fig. 22: Left: USB cable not connected, right: USB cable connected (virtual COM port selected)

22 The IoT brick and the Arduino IDE

You have to select or examine more parameters in the menu "tools". The settings displayed in the following
screenshot need to be selected. Below "port:" you have to select the COM port that was assigned to the
virtual COM port before.

Fig. 10: Settings for IoT brick

5.3.2 Compiling and uploading program code

By clicking on the button with the checkmark, the program code - the Arduino world calls it Sketch - is exami-
ned for mistakes in syntax and is compiled. Mistakes in syntax are typos in your Sketch or violations against
rules of the programming language. While compiling, your program code is translated into machine code
that our microcontroller can perform. This is done automatically by a compiler (translator) that is integrated
into the Arduino IDE.

After having successfully compiled your program code, you can upload the program to your IoT brick by
clicking on the arrow icon. The red LED on the lower left close to the USB port on the IoT brick will light up
while the program is loaded into the fl ash memory. Beginning and ending of the loading process is signaled
by a short fl ashing. Once the upload is done, the LED will turn off.

Fig. 24: Examine sketch, compile and upload

In the next chapter you will get to know how to start the programming mode manually.

5.3.3 Programming mode

Use this practice in case you want to start the programming mode manually. This is only necessary if the
communication between Arduino IDE and IoT brick does not work.

1. Keep pressing the programming key (GPIO0) (lower left red LED lightens up)

2. Press reset key at the same time

3. Stop pressing reset key

4. Stop pressing programming key (lower left red LED is only slightly illuminated)Stop pressing programming key (lower left red LED is only slightly illuminated)

Examples 23

6. Examples

6.1 "Hello World" (blinking LED)

 Open the sketch in the Arduino IDE: Example_6.1.ino

As usual in the coding world, it starts with a "Hello World" example. In this case, we will have two LEDs blink
alternately. A program - also called sketch in the Arduino world - consists of at least two parts.

The Setup-Routine void setup()

First, there is the part void setup() {…}. When starting the program, all commands within this brace are car-
ried out exactly once. In our example, the GIPI pins' direction is defined, meaning (mode: input) or, as in our
example: two outputs (mode: output)

Program loop void loop()

The actual program is included in the brace of void loop() {…} and is permanently repeated. The commands
are carried out in an infinite loop until the program is stopped by pressing the reset button, for example.
In our first coding example, (Beispiel_6.1.ino) the double LED brick is connected to the IoT brick's GPIOs 13
and 14.

+
-

9V
1A

LED

LED

USB-Verbindung zum Entwicklungsrechner

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

void setup() {
 pinMode(14, OUTPUT); // Pin 14 is output
 pinMode(13, OUTPUT); // Pin 13 is output
}

void loop() {
 digitalWrite(14, HIGH); // LED on Pin 14 an
 digitalWrite(13, LOW); // LED on Pin 13 aus

 delay(1000); // wait for 1000ms

 digitalWrite(14, LOW); // LED on Pin 14 aus
 digitalWrite(13, HIGH); // LED on Pin 13 an

 delay(1000); // wait for 1000ms
}

Fig. 25: Example: "Hello World" (blinking LED

GPIO 13 and 14 are defined as output in the setup routine with pinMode(GPIOx, OUTPUT) .

Hence, these pins are able to issue a high level to have both LEDs blink alternately.

In the loop, the pin with digitalWrite(GPIOx, HIGH) is set on high level.

This means that each GPIO issues 5V which is why the LED turns on. With the command digitalWrite(GPIOx,
LOW) the pin is set to 0V – the LED turns off.

The program stops for the respective number of milliseconds with the command delay(…).

In this example it is 1000 milliseconds that complies with one second. After having uploaded the coding ex-
ample to your IoT brick (see chapter 5.3.2 on page 22), both LEDs blink alternately. Play with the code a little
bit. Change the order in which the LEDs turn on and off and change the time intervals inbetween.

24 Examples

6.2 Button and LED

 Open the following sketch in the Arduino IDE

In the following example, we want the LEDs to lighten up dependent on a button. In addition to the reset
button, the IoT brick includes a further button that is connected to the GPIO0. Hence, we use the GPIO0 as
input and read the status of the button. To prevent an undefined level at this input as long as you don't
push the button, an internal pull-up resistor was included that moves the input to high level (see chapter
5.1.3 on page 14). As soon as the button is pushed there are 0V at the input. This way, you can clearly tell if
the button is pushed or not.

Don't get confused that the coding LED bottom left is lightened up as long as you push the button. The LED
and the button are connected and don't have anything to do with your code.

+
-

9V
1A

LED

LED

USB-Verbindung zum Entwicklungsrechner

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

void setup() {
 pinMode(0, INPUT); // Pin 0 ist Tastereingang

 pinMode(14, OUTPUT); // Pin 14 ist Ausgang
 pinMode(13, OUTPUT); // Pin 13 ist Ausgang
}

void loop() {
 if (digitalRead(0)==LOW)
 { // wenn Taste gedrückt wird

 digitalWrite(14,HIGH); // LED an Pin 14 an
 digitalWrite(13,LOW); // LED an Pin 13 aus

 }
 else{ // wenn Taste NICHT gedrückt wird
 digitalWrite(14,LOW); // LED an Pin 14 aus
 digitalWrite(13,HIGH); // LED an Pin 13 an
 }

 delay(100); // warte für 100ms
}

Taster

Fig. 26: Example: Button and LED

As long as the button is not pushed, the yellow LED lightens up at GPIO13. As soon as you push the button,
the red LED lightens up at GPIO14.

The command delay(100) at the end of the loop is responsible for the program waiting 100 milliseconds at
this point. The microcontroller can "take a break" during this time.Now it's your turn again! Vary the code
a little in order to better understand it. For example, make the LEDs lighten up in sequence as soon as you
push the button.

 Caution: Don't us an external button that is directly connected to 9V as the GPIOs are only made for
5V levels. We advise to use the integrated button GPIO0.

 At a voltage level of more than 5V on the GPIOs, the IoT brick can get irreversible damages!

Examples 25

6.3 I2C-bus

The I²C bus is a serial interface that gets by with two lines, the clock line SCL (Serial Clock) and the data
line SDA (Serial Data). The lines work bidirectional. We differentiate between master and slave among the
network devices. In this case, the IoT brick is the master and the other bricks are the slaves. The network
devices are addressed via I²C addresses. There are 128 per bus possible. Individual network devices can cover
various addresses. Some network devices have little DIP switches on the back, making it possible to change
the address range when several network devices are used at the same bus. Basically, the bus can be used
with different speed:

Mode Speed
Standard Mode (Sm) 0,1 Mbit/s

Fast Mode (Fm) 0,4 Mbit/s
High Speed Mode (HS-Mode) 1,0 Mbit/s

Ultra Fast-Mode (UFm) 5,0 Mbit/s

Many microcontrollers are able to control the first two modes only (for example, the controller of the Ardu-
ino Nano), some of them also control the third mode. The same is true for the companion devices. Naturally,
the modes need to fit together. The master, meaning the microcontroller, sets the pace on the SCL line. The
acutal datat is transferred via the SDA line.

Gerät 1 Gerät 2 Gerät n

V+

SCL
SDA

Fig.11: I2C-Busstruktur

You can connect a maximum of 128 devices to an I²C bus as long as each device occupies one address only,
otherwise accordingly less. The devices are connected via two bus lines. Both pull-up resistors (in the kΩ unit)
are already integrated in the IoT brick.

Daten gültig Daten gültig

Daten ändern sich

SDA

SCL

Fig. 12: Valid data at the I2C- bus

The clock indicates when there is valid data received. As you can see in fig. 28, this is always the case at the
high level of the SCL line. The receiver can now sample and evaluate the data. The master sets the pace,
either creating data itself or expecting this data from the respective device.

26 Examples

Daten-Byte (8 bit)
STOP, erneuter START
oder nächstes Daten-Byte

Quittierung
ACK

Slave-Adresse + (R/W)

SCL vom
Master

SDA vom
Empfänger

SDA vom
Sender

SDA
gesamt

1 2 7 8 9

Daten MSB
(Most Significant Bit)

Daten LSB
(Least Significant Bit)

Fig. 29: Data transfer on the I²C bus

In Fig. 29 you can see the temporal course of a data transfer with the following signals (from bottom to top):
the clock signal SCL (indicated by the master), the data line from receiver's perspective (receiver) is not di-
rectly activated as it is low-active. The data bits, as they were sent by the transmitter (low-active) and at the
very top the SDA signal in the overall view. The synchranisation is important. A receiver (whether master or
slave) sends an acknowledgement signal (ACK = acknowledge) at the end of each data packet by moving the
SDA line to low. As this is equivalent to a Wired-OR, it is sufficient that a slave sends the ACK signal.

Daten-Byte (8 bit)Slave-Adresse (7 bit) + Schreib-/Lese-Bit (R/W)START

Adresse
MSB

Adresse
LSB

Quittierung
ACK

Quittierung
ACKR/W

Daten
MSB

Daten
LSB

STOP

SDA

SCL
1 2 7 8 9 1 2 7 8 9

Fig. 30: transmission cycle at the I²C bus

You can see the complete transmission cycle in Fig. 30. First, a package including the address is sent. The
address consists of 7 bits, including an additional one, the so called R/W (Read/Write) bit. All network devices
compare the emitted address with their own. When they correspond, the respective slave acknowledges this
with an ACK signal by briefly setting the SDA line on low. Depending on the R/W bit, the addressed slave
knows whether to start a sending- or receiving cycle. Afterwards, the acutal data transfer can begin. In the
end, a stop cycle is initiated. For this, the clock is put on high and the SDA line is released. The lines SDA and
SCL are both on high level, meaning that the I²C bus can be used freely. It would be possible that a different
master starts a new cycle (in case there are more than one at the bus).

The I²C bus is easy to use for us as the Arduino library provides various commands to control the bricks with
I²C interface (e.g. 7 segment indicator brick) via the IoT brick.

6.3.1 The 7 segment indicator

In the early days of computer technology they cared about how to display numbers. The easiest way to do
that was with 10 lights that were labelled from 0 to 9. Afterwards, they used the lights for illuminating litt-
le glass plates with the respective holes. At the same time, the so called "Nixi tubes" were introduced, the
numbers were made of wire and started to lighten up when applying a higher voltage under protective
gas atmosphere. Then they came up with the idea to devide the numbers into segments. You can display all
numbers between 0 and 9 with seven segments. The first displays still used glow wire but it became easier
when the LEDs were invented. Behind each segment there is a LED that illuminates the bars. The individual
segments are frequently indicated with "a to g ". In addition, there is a single LED for the decimal point (dp).

Examples 27

d

a

b

ce

f g

dp

Fig. 31: The 7 segment indicator

Like this, you can easily display the numbers 0 to 9. We will get to know a more elegant way of displaying
when dealing with the OLED display (see chapter 6.4 on page 32). With it you can also depict simple graphics.

There are two 7 segment indicators included in our 7 segment indicator brick that are connected via the I²C
bus. The display on the left is called MSB sign (Most Significant Bit) while the right display is called LSB sign
(Least Significant Bit) - see chapter 6.5.2.5 on page 38. Both 7 segment indicators are controlled each via an
I/O extender type 8574T. This component is responsible for decoding the address on the I²C bus and the data
bytes (here: numbers) for controlling the seven segments including the LED driver stage.

6.3.2 7 segment indicator as I²C brick - Structure and addresses

 In the Arduino IDE, open the sketch: Beispiel_6.3.2.ino. You need to include the following header file:
Wire.h. In case you haven't installed the necessary libraries yet, see chapter 5.2.1 on page 16 and follow the
instructions.

We will realise a simple circuit with the 7 segment indicator. You can adjust the brick's I²C address on the
back via two little switches (possible addresses hexadecimal: 40(16), 44(16), 48(16), 4C(16))

Hence, you can use a maximum of four of these bricks on a I²C bus.

Caution: Usually, the address 40(16) (see Fig. 32) is preset but you possibly need to control and adjust the
settings (see sketch Beispiel_6.3.2.ino). The switches are on the back of the board and are accessible via a
hole at the bottom. If you are skilled, you can adjust the little slide switches with a toothpick, for example.

SW
1212 12
0
1

DIP-Schalter-Stellung zur Einstellung der I2C-Adresse:

12

44(16):40(16): 48(16): 4C(16):
1212

(Standard-
Einstellung)

Fig. 32: Setting of addresses I²C 7 segment brick

 Caution: All bus subscribers at the I²C bus have to use a different address. Otherwise
malfunctions can be caused!

28 Examples

We prepared a little library for the Arduino IDE in which all segments are coded. This is realized via a so
called character table. With one byte, the combination of segments in a table is assigned to the numbers and
even letters from A to Z. To make it easier, we already prepared several subprograms for it.

The function display_seg1x() displays one individual segment. For this, you transfer the I²C address of the
respective driver component. The function get_7seg () converts the ASCII code into the index of the table in-
cluding the segment assignments. You can directly control the segments with display_seg1xbin (). There are
two of these driver components for both numbers that are addressed with a rising address and with a gap
of two numbers. The sketch normally uses the I²C address for the low digit (called "LSB signs" in the sketch):

40(16), and for the high-order digit 42(16) (called "MSB signs" in the sketch).

Please take a closer look at and experiment with our coding example.

+ -

9V1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

I²C 7-Segment-LED
SCL

SDA

SCL

SDA

+9VAdr:40,44,48,4C
PCF8574 T

+9V

USB-Verbindung zum Entwicklungsrechner

Advice: Don't insert the OLED display in this
example. This way you will prevent malfunc-
tions on the I²C bus due to wrong coding.

Fig. 33: Example: shows I²C address of the 7 segment brick

Program detail

void loop() {
// 7 segment display with driver part 8574T
// Export all potential addresses for identifi cation
// This way you can see which address is set
 display _ seg1x(i2cseg7x2amsb1,'4'); // own address
 display _ seg1x(i2cseg7x2alsb1,'0'); // export
 display _ seg1x(i2cseg7x2bmsb1,'4'); // are always pairs
 display _ seg1x(i2cseg7x2blsb1,'4'); // two commands for a brick
 display _ seg1x(i2cseg7x2cmsb1,'4');
 display _ seg1x(i2cseg7x2clsb1,'8'); // from 0x40 to 0x4C
 display _ seg1x(i2cseg7x2dmsb1,'4');
 display _ seg1x(i2cseg7x2dlsb1,'C');
}

Examples 29

What's happening?

The sample program (see sketch Beispiel_6.3.2.ino) shows the I²C address on the display by sending the
address as data bytes to the corresponding address. This is repeated with all useful addresses (40(16), 44(16),
48(16), 4C(16)). As soon as the correct address is sent, the brick feels addressed and displays the respective
address. This way, you can easily find and note the value.

6.3.3 7 segment display as counter

 Open the sketch Beispiel_6.3.3.ino in the Arduino IDE. Include the following header file: Wire.h. In case
you haven't installed the respective libraries yet, see chapter 5.2.1 on page 16 and install it.

We want to realize a simple counter in the following example. You can use the same circuit as in Fig. 33. The
count is saved in the variable counter. The program increases the value every 500ms by one. But on a two-
digit 7 segment display a maximum of 99 can be displayed. In an if request the value of counter is requested
to greater than 99. If this is the case the display will be set back to 00. The variable counter counts from 0 to
99 and then restarts from 0.

Program excerpt

void loop() { // In the loop

 char buffer[10]; // Select a character buffer of a specific value

 static int counter = 0; // Set counter variable to 0

 sprintf(buffer,"%02d",counter++); // Convert Integer to sign

 if (counter >99) counter = 0; // Counter should count between 0 and 9

 // Export count with two numbers, that ś why buffer is 0 and 1
 display _ seg1x(i2cseg7x2alsb1,buffer[1]); // LSB signs to address 0x40
 display _ seg1x(i2cseg7x2amsb1,buffer[0]); // MSB signs to address 0x42

 delay(500); // count up circa every 500ms.

} // End of loop

Normally, for the low digit (called LSB signs in the sketch) it uses the I²C address: 40(16) and for the high-
order digit 42(16) (called MSB sign in the sketch).

Please note that the loop will take more time than 500 ms. Striktly speaking, the time that is needed to carry
out the other commands has to be added to the actual command delay(500). If you would like to work more
precise, you have to use and request a timer.

30 Examples

6.3.4 7 segment display with debounced button

 Open the sketch Beispiel_6.3.4.ino in the Arduino IDE. You have to include the following header fi le:
Wire.h. In case you haven't yet installed the necessary libraries, see chapter 5.2.1 on page 16.

Buttons and switches have the disadvantage that the mechanical contact (frequently a spring) when being
used causes a repeated closing and opening. This disruptive effect is called "bouncing" in digital techno-
logy. This problem can be solved, however, with a simple RS fl ip-fl op (learn more about this topic with the
Brick'R'knowledge Logic Set). In this task, alternatively, you get to know button debouncing via software.
The main idea is to include a waiting period in the software that lasts at least as long as a bouncing cycle.

We use our counter again that you already know from example 6.3.3.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

I²C 7-Segment-LED
SCL

SDA

SCL

SDA

+9VAdr:40,44,48,4C
PCF8574 T

+9V

USB-Verbindung zum Entwicklungsrechner

optional

optional

Advise: Don't insert the OLED display
in this example to avoid malfunctioning
on the I²C bus due to wrong coding.

Experiment with the optionally available dual push-
button brick and program an upwards counter /
decrementer, for example. Connect the brick as shown
in the example. Make sure that there is no voltage >
5V on the GIPOs as otherwise, the IoT brick can be
damaged irreversible.

Button (GPIO0) Experiment with the optionally available brick "clamp 5-pole
type 2" to evaluate external switch contacts (e.g. an alarm
contact). Make sure that the voltage is below 5V, otherwhise
the IoT Brick can be damaged.

GPIO14

Optional version:

Fig. 34: with debounced switch

 Careful: Don't use external switches that are directly connected with 9V as the GPIOs are designed
for 5V levels only. We advise to use the integrated switch GPIO0. At a voltage level > 5V on the GIPOs
as otherwise, the IoT brick can be damaged irreversible!

Test different values in the delay command to determine a short but still reliably debouncing waiting time.
Experiment with optionally available bricks as in Fig. 34 ("Dual push-button brick" and "Clamp 5-pole
type 2"). Make sure that you connect the GPIOs (that are confi gured as input) only to ground. As long as
the button or switch is open, there is high level on the pin as pull-up resistors are equipped internally (see
chapter 5.1.3 on page 14).

Examples 31

Taste drücken

geschlossen

abfragen

Wartezeit (delay)

Fig. 35: Button debouncing via software

Algorithm to debounce

The button is low active, that means when pushing it there is a low level at the input (example GPIO0). The
signal is requested during the first transition from high to low (if query). Then there is a pause until it gets
to high level (supposedly, the button is not pushed anymore) - the while-loop is left. The delay time starts
from here (40ms) to finally issue the new valid count. The next keystroke is expected, namely, high-to-low
transition. Be aware that the delay time depends on the type of key that is being used. The optimal value
needs to be determined experimentally to avoid evaluating pulse bounces.

Program excerpt

void loop() { // Loop

 char buffer[10]; // Use character buffer of a defined value

 static int counter = 0; // Set counter variable to 0

 sprintf(buffer,"%02d",counter); // Converter Integer to sign

 // Interogate button, can bounce
 if (digitalRead(0)==LOW) { // Ceck High->low
 // Wait for the low-high transition
 // You can also do that after the delay, is not critical.

 while (digitalRead(0)==LOW) {
 // Wait until the button is released
 }
 counter++; // Count up
 delay(40); // delay, so that the queries are not done too quickly
 } // end of the if query High->Low

 if (counter > 99) counter = 0; // Counter should count between 0 and 99

 // Export count as two digits, that ś why the buffer is 0 and 1
 display _ seg1x(i2cseg7x2alsb1,buffer[1]); // LSB number to address 0x40
 display _ seg1x(i2cseg7x2amsb1,buffer[0]); // MSB number to address 0x42

} // End of loop

What's happening?

With every keystroke the display should count up exactly "1", that means, 00, 01, 02...99. Afterwards, the
display returns to 00.

Don't get confused due to the coding LED lightening up in the low left as long as you push the GPIO0 but-
ton. The LED and the button are connected and don't have anything to do with your code.

32 Examples

6.4 OLED-Display – Basics

7 segment displays are usually used for numbers only and very rarely for letters. With 14 and 16 segment
displays letters can be displayed adequately. After that, there were the fi rst Grid Guide Displays including
a matrix of 5x7 points that displayed texts in a much better quality and even fi rst graphic characters could
be displayed. The displays were based on LEDs, then LCDs (Liquid Crystal Displays) and recently OLEDs (Or-
ganic Light Emitting Diodes) were introduced to the market. The latters are similar to LEDs as they are able
to lighten up. Our set contains a monochromatic OLED display with 128x64 pixels with which you cannot
only display individual numbers but also multiline text and simple graphics. To display characters in this way
you need a character generator or a table similar to the one of the 7 segment display. The numerical code is
translated into the state of on /off for the segments. The character generator or the character chart needs
comparably more memory. The value depends on the number of pixels per character. For the smallest with
about 5x7 pixels, about 5 bytes per character are needed. If you want to display the whole ASCII set (128
characters incl. spaces) you need 128x5 bytes = 640 bytes.

With the 4-pole male connector, you put the included OLED display on the IoT brick as shown in the Fig..

GPIO3
ADC

micro USB

18 bit

10 bitGPIO1
(Rx)

(10:1)

I2C, max 20V

(Tx) GPIO0 RESET int, max 10V

SDA SCL 5V GND

IoT Brick

GPIO5

+9V

GPIO14

GPIO13GPIO4
(SCL) (SCLK)

(MOSI)(SDA)

n.c.

GPIO12
(MISO)

Fig. 36: OLED display on IoT brick

 Open the following sketch in the Arduino IDE: Beispiel_6.4.ino. Include the following header fi le: #in-
clude <SSD1306Wire.h> and #include "Fig.s.h". The fi le Fig.s.h needs to be included in the project list of this
sketch. In case you haven't installed the library SSD1306Wire.h yet, see chapter 5.2.1 on page 16. To simplify
controlling the OLED displays we use a completed library. In case you haven't installed it yet, see chapter 5
on p.13.

The library for controlling our OLED display is included with #include "SSD1306Wire.h" and with initialized
with SSD1306Wire display(0x3c, 4, 5);. This means, to get the correct address for the function display(), you
need to move the hardware-I²C address of our OLED displays (standard: 0x78) for one bit to the right. The
programmer writes: (0x78>>1) - the result is "0x3c". The parameters including the values 4 and 5 indicate the
GPIOs for the I²C bus.

Upload this sketch on your IoT brick to get a fi rst impression. It shows you everything that is possible, from
different font sizes, via graphics, to uploading progress bars.

Examples 33

• Take your time to have a look on this and the other examples. Don't get confused, the examples involve
code that is partly irrelevant for us. In the following OLED example you will see that it is basically easy to
show a text on the display.

• Find more examples on the OLED display in the Arduino IDE:

• "Datei – Beispiele – ESP8266 Oled Driver for SSD1306 display – …"

• Control the following lines of code to make them function correctly with the IoT brick:

• Allocating the I²C pins for the OLED needs to include: SSD1306Wire display(0x3c, 4, 5);

• or: SSD1306 display(0x3c, 4, 5); depending on #include command at the beginning of the sketch.

• Commenting out the line including the command display.fl ipScreenVertically(); there need to be two
forward slashes // prefixed to avoid displaying it the wrong way.

6.4.1 OLED-Display – display text

 Open the following sketch in the Arduino IDE: Beispiel_6.4.1.ino. Include the following header file: In
case you haven't yet installed the respective library, see chapter 5.2.1 on page 16.

In this simple example we want to issue a text on the OLED display by using the OLED library SSD1306Wire.h.

Determine the following parameters:

• Coordinates
Originating from the coordinat (x, y) that was defined here you can determine the point of reference of
the text and its content with the command…

• display.drawString(x, y, "Beispieltext");

• Focus
Originating from the defined point of reference, with the command display.setTextAlignment(TEXT_
ALIGN_x); you can determine whether the text is aligned to the left (TEXT_ALIGN_LEFT), centered
(TEXT_ALIGN_CENTER) or to the right (TEXT_ALIGN_ RIGHT).

• Size of text
This library natively supports the three standard font sizes 10, 16 und 24 pixels. Define the size with the
command display.setFont(ArialMT_Plain_X);.

• Imagine the display to be a coordinate system that has the origin 0,0 on the upper left.

0

20

40

y

0 63 127 x

• Fig. 37: The coordinate system of the OLED matrix

34 Examples

Program excerpt

void loop() {

 display.clear(); // Clear display

 display.setTextAlignment(TEXT _ ALIGN _ LEFT); // Align text on the left
 display.setFont(ArialMT _ Plain _ 16); // Font size 16pixels
 display.drawString(0, 0, "BRICK"); // Position 0,0 Text: "BRICK"

 display.setTextAlignment(TEXT _ ALIGN _ CENTER); // Align text centred
 display.setFont(ArialMT _ Plain _ 16); // Font size 16 pxls
 display.drawString(63, 20, "OLED"); // Position 63,20 Text: "OLED"

 display.setTextAlignment(TEXT _ ALIGN _ RIGHT); // Align text on the right
 display.setFont(ArialMT _ Plain _ 16); // Font size 16 pxls
 display.drawString(127, 40, "TEST"); // Position 127,40 Text: "TEST"

 display.display(); // Issued on display

 delay(1000);
}

If you want to try a different font size or even type, the OLED library's developer offers an online font editor:
http://oleddisplay.squix.ch/#/home

After having defi ned the text and its position, focus, size and content, you can display it on the OLED with
the command display.display();.

And now feel free to write different texts in different sizes to different positions.

Examples 35

6.5 Analog inputs

6.5.1 A/D-converter – basics

A/D conversion stands for analog-to-digital conversion. The aim is to measure analog values such as an
unknown voltage and convert them into a digital value. The computer can then process this value further.
With analog values, a normal computer can not do anything. Two important steps are carried out here, a
quantization of the amplitude, for example, the voltage and a quantization of the time in the case of a chro-
nologically variable course of the analog value.

What does this mean?

The quantization in amplitude is easy to understand. Assuming an analog voltage can take any value bet-
ween 0 and 5V. So 2,3 V or 2,31 V or 2,315 V ... etc. So the question arises, how exactly I want to measure and
how fine and how many steps I want my signal to dissolve? Finally, the numerical values have to be prepared
for processing in a digital calculation system.

Example:

We want to digitize a voltage range from 0 to 5V in 6 steps. What digital value is then given for 2.1V? The
diagram below shows the assignment at the red points. The value 2.1 is closer to 2 than to 3, so the digital
value 2 will be selected. At a value of 2.5, you can assign 3 as a digital value if you round the figure 2.5 com-
mercially.

0

2

1

3

4

5

6

0

2

1

3

4

5

6

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Spannung

Spannung

9

9

Zeit

Zeit

Fig. 38: Scan analog signal

In the above figure, we recorded the waveform over time of a voltage signal (in the x-axis we see the time in
seconds and the y-axis the voltage in volts). When the signal is converted into a digital number sequence, a
measured value (vertical lines) is sampled once per second, and the rounding is then performed on a single
point. This results in the following measurement series:

Time 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s
Voltage 2 V 2 V 3 V 5 V 4 V 4 V 1 V 1 V 2 V 4 V

36 Examples

There are two interesting effects:

1. We lose information in amplitude because the smallest detectable voltage unit in our example is assu-
med to be 1V. This effect is also called quantization error, which in our case can be up to 0.5 V deviation
from the true value in the positive or negative direction. With a higher resolution of the conversion, we
would also have more information on the original signal.

2. We also lose time-relevant information. Thus, in the range between 1 and 2 seconds, we see a voltage
drop of up to 1V, which is not visible in the measurement series. Those skilled in the art will now note
that the so-called Nyquist-Shannon sampling theorem has been violated. This means that the sampling
rate for a periodic signal must be at least twice as high as its maximum frequency component (also
called oversampling). This criterion is violated in the case of the shorter over- and under-oscillators.

If you now connect the red dots, you get the "visible" signal for the computer, which was scanned in a time
raster of 1 second. The original curve is no longer exactly reconstructible. However, the more the number of
sampling points is increased, the better the signal can be reconstructed (see sampling theorem).

0

2

1

3

4

5

6

0

2

1

3

4

5

6

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Spannung

Spannung

9

9

Zeit

Zeit

Fig. 39: Reconstruction of the sampled signal

The resolution of the amplitude is determined by the number of discrete steps assigned to a numerical value.
In our example, we distinguish 6 voltage levels. For comparison, a 10-bit A / D converter already provides
1024 stages, which are generally binary-coded (see also section 6.5.2.5 on page 38). In the IoT brick we have
the choice between a 10 bit and an 18 bit A / D converter.

10 bit and 18 bit A / D conversion in comparison

10 bit A/D converter 18 bit A/D-converter

Number of stages (resolution) 210 = 1024 218 = 262144

Measuring range and correspon-
ding digital value (decimal)

0…9,99 V
0…1023(10)

0… 19,999924 V
0…262143(10)

Minimum voltage level (so-
called "Least Significant Bit"
(LSB))

10 V / 1024 = 0,0098 V (= 9,8 mV) 20 V / 262144 = 0,000076 V (= 76 µV)

Quantization ±4,9 mV ±38 µV

Sampling rate max. 200 Samples/second (= 200 S/s) 3,75 Samples/second (= 3,75 S/s)

Sampling rate max. SAR-converter Delta-Sigma-converter (∆∑-converter)

To convert the analog signals into digital, binary coded values, there are different conversion methods that
would go beyond the scope of this manual. As a keyword for our own research we would like to mention
only the most important procedures:

Examples 37

• Integrating converters (counting methods)
Slower than weighing, interference-free, low hardware, realization: single-, dual- and quad-slope con-
verter, application example: Multimeter

• Feedback transducers (weighing)
Good compromise between speed and hardware expenditure, realization:
- delta-Sigma-converter (∆∑-converter), application exemple: 1-bit A/D-converter in audio technology -
SAR (Successive Approximation Register) converter, application example: measuring technology with very
high resolution.

• Parallel-converter (Flash- end Pipeline-converter)
Very fast, very expensive, realisation: Flash and pipeline converter, Example: radar engineering.

6.5.2 The A/D converters on the IoT Brick

6.5.2.1 The 10 bit A/D converter

The ESP8266 offers an integrated analog-to-digital (A/D) converter with a resolution of 10 bits, which cor-
responds to a resolution of the voltage value of 210 = 1024 steps. The input voltage range of the converter
itself is from 0V to 1V. For a better realisation, a 10-to-1 (10: 1) voltage divider was connected at the brick
input "ADC 10 bit", so that a voltage of 0V to 10V can be measered directly. This allows you to build a simple
voltmeter that can measure DC voltages from 0V to 10V.

6.5.2.2 The 18 bit A/D-converter

Age range from 0V to 2V with a 10-to-1 voltage converter connected upstream. This results in a practical
input voltage range of 0V to 20V, so the input voltage at the brick input "ADC 18 bit" has an input voltage
of max. 20V.

6.5.2.3 The voltage divider

A voltage divider with a 10-to-1 divider ratio is installed in the IoT brick at both voltage converter inputs
"ADC 10 bit" and "ADC 18 bit":

Make sure that no more than
10V is present at the "ADC 10
bit" input and never more than
20V at the "ADC 18 bit" input.
Otherwise, the A/D converter
can be damaged!

IoT Brick

10 MΩ
R1

1,1 MΩ
R2 UADC

UMess

Fig. 40: Voltage splitter (10.1)

The division ratio is calculated as follows:

𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴

= 𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

 = 11,1 MΩ
1,1 MΩ = 10,09 ≈ 10

38 Examples

6.5.2.4 Practice Tip: correction factor

Note that inaccuracies in the measurement result can occur due to tolerances of the internal resistor advan-
tages at the inputs "ADC 10 bit" and "ADC 18 bit". This deviation can be compensated by a correction fac-
tor. To determine the correction factor, for example, use a precise multimeter and check the voltage UMess.
Then you calculate the correction factor from the ratio of the voltage measured with the multimeter and
the voltage displayed on the IoT Brick without correction! In the sample program, we have prepared the
appropriate code for this (Remove the two slashes (comment) only after you have made the measurement
without correction). The correction factor is defined as a constant for the sake of clarity at the beginning of
the program (see the following program section for the 10-bit A / D converter).

correction factor = UMess, Multimeter / UDisplay Brick

Program section for correction factor (see example_6.5.3.ino)
//The procedure is the same for 10bit and 18bit ADC
...
//define the corpuscleactor for 10bit ADC
const float Correction _ 10bit = 1.046;
...
//Correction factor (determined with multimeter measurement)
UMess _ 10bit = UMess _ 10bit * Correction _ 10bit;
...

Since each resistor has different manufacturing tolerances, the correction factor for the two A / D converters
should also be determined separately.

6.5.2.5 Binary encoding

An A/D converter converts an analog measured value at the input into a binary coded value at the output.
One also speaks of binary word whose width, ie the number of individual binary characters is given in bits
(as a unit, incidentally, small: 1 bit). In our case, we have a 10 bit or 18 bit binary word depending on the A/D
converter resolution. The least significant bit is often referred to as a "Least Significant Bit" (LSB) and the
most significant bit is a "Most Significant Bit" (MSB).

Number of
bits

Number of encodable
states

binary number
(Number of codable states - 1)

Decimal num-
ber

Hexadecimal

 217 … Valence … 20

(0) 1 = 20 00 0000 0000 0000 0000 0 0

1 bit 2 = 21 00 0000 0000 0000 0001 1 1

2 bit 4 = 22 00 0000 0000 0000 0011 3 3

3 bit 8 = 23 00 0000 0000 0000 0111 7 7

4 bit 16 = 24 00 0000 0000 0000 1111 15 F

… … …

8 bit 256 = 28 00 0000 0000 1111 1111 255 FF

10 bit 1024 = 210 00 0000 0011 1111 1111 1023 3FF

12 bit 4096 = 212 00 0000 1111 1111 1111 4095 FFF

14 bit 16.384 = 214 00 0011 1111 1111 1111 16.383 3FFF

16 bit 65.536 = 216 00 1111 1111 1111 1111 65.535 FFFF

18 bit 262.144 = 218 11 1111 1111 1111 1111 262.143 3FFFF

Highest bit
(Most Significant Bit (MSB))

Least significant bit
(Least Significant Bit (LSB))

Examples 39

6.5.3 A/D-converter 10 bit

 Open the sketch in the Arduino IDE: Beispiel_6.5.3.ino. The following header fi les must be included:
SSD1306Wire.h. If you do not have the appropriate libraries installed, go to chap. 5.2.1 on page 16 and ret-
rieve this.

In this example, we measure a voltage across a variable resistor (potentiometer, often called only Poti).

The resistance value of the potentiometer varies between 0 Ω and 10 kΩ depending on the position.

The voltage that drops across the potentiometer is linear to the resistance value. When the potentiometer
is in the clockwise direction, the resistance value is approx. 10 kΩ between ground and the sliding contact,
which is connected to the analog input (ADC 10 bit) of the IoT bricks. Now the full supply voltage is present,
which should be about 9V. If we now turn the potentiometer counterclockwise to the stop, then there is 0V
(ground) at the input of the A / D converter. In the middle position of the potentiometer, approximately half
the supply voltage will be present, H. About 4.5V.

+ -

9V1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

10
kΩ

USB-Verbindung zum Entwicklungsrechner

ADC 10 bit:
0.00 V

UMess

Fig. 41: Brick circuit 10 bit A / D converter

The measured voltage UMess is displayed on the OLED display and updated every second. Furthermore, the
digital raw value and the calculated voltage value is output to the serial monitor of your computer. To open
the serial monitor, simply click on the magnifying glass symbol in the Arduino IDE (see chapter 5.2.3 on page
20). You can use the following formula to convert the digital value from the A / D converter to the analog
voltage value (see also sample program Beispiel_6.5.3.ino).

UMess = (analogIN / 1024) * 10 V

By setting 1023 for analogIN, you get the maximum value of the input voltage range. In Our case is 9.99 V.

 See next page for program details.

40 Examples

Program excerpt

void loop(void)
{
// Reads voltage as raw value: 0 = 0V bis 1023 = 1V-1LSB
 analogIN = analogRead(adc _ esp8266);
// Convert to Volt with analog IN / resolution (* 1 Volt), * 10 because of 10: 1
divider at the ADC
 UMess = ((fl oat)analogIN/1024)*10.0;
// Convert voltage value to string for OLED output
 String UMess _ str = String(UMess, 2); // 2 decimal

 display.clear(); //delete OLED

 display.setTextAlignment(TEXT _ ALIGN _ LEFT);
 display.setFont(ArialMT _ Plain _ 24);
 display.drawString(0, 0, "ADC 10 bit:");
 display.setTextAlignment(TEXT _ ALIGN _ RIGHT);
 display.setFont(ArialMT _ Plain _ 24);
 display.drawString(120, 32, UMess _ str + " V");

 display.display(); // output to OLED
 delay(1000);

Using the command analogIN = analogRead (adc_esp8266); reads the digital raw value from the internal
A / D converter of the ESP8266. The value range of the 10-bit converter is from 0 to 1023 (decimal). In our
example, the value 0 corresponds to the voltage 0V and the raw value 1023 corresponds to the maximum
value of the input voltage range.

For syntactic reasons, we must fi rst convert the analogue ININg.variable, which returns the raw value of the
A / D converter, to the fl oat variable UMESS to convert it into the correct voltage value. For the output, we
need the string variable UMess_str

Examples 41

6.5.4 18 bit A / D converter

 The brick circuit for this exercise differs only by the brick bottom in the middle as opposed to the pre-
vious exercise. Thus, the same voltage UMess is present at both analog inputs, which can be varied via the
potentiometer. This allows a simple comparison of the two A / D converters. The resolution of the 18-bit A
/ D converter, which is 256-fold better than the 10-bit A / D converter, is clearly visible in the measurement
result.

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V
10
kΩ

USB-Verbindung zum Entwicklungsrechner

18 bit: 0.0000 V
10 bit: 0.00 V

+ -

9V1A

UMess

 Fig. 42: Brick circuit 18 bit A / D converter

From the belly we would expect identical voltage values for this circuit. But the saying "Who measures,
measures dung" also applies here. As already mentioned in the previous chapter, component tolerances
play a role here. The default tolerance of 10% of the two 10-to-1 voltage dividers at the inputs of the A/D
converters has a major effect (see section "6.5.2.3 the voltage divider" on page 37).

 For program details, see next page.

42 Examples

Programmausschnitt

void setup(void)
{
…
// Init MCP3421: I2C address, 18 bit mode, no gain
 MCP.init(0x68,3,0);
…
}
void loop(void)
{
…
// Reads voltage as double values of MCP3421, input range: 0 to 2.048V
 analogIN _ 18bit=MCP.getDouble();
 UMess _ 18bit = analogIN _ 18bit*10.0; // * 10 because of 10: 1 divider
// The next line for determining the correction factor using
// Please measure the multimeter measurement!
UMess _ 18bit = UMess _ 18bit * Correction _ 18bit; // Correction factor
// Convert voltage value to string for OLED output
 String UMess _ 18bit _ str = String(UMess _ 18bit, 4);
…
 display.display(); // Output of both voltage values to OLED
 delay(1000);
}

We use the library MCP3421.h to simplify the programming of the MCP3421. The A / D converter is initially
set with MCP.init (0x68,3,0); initialized. With the MCP.get-Double () function, the voltage value is already
returned as a double value, ie as a fl oating point number.

Since the MCP3421 sweeps an input voltage range from 0 to 2.048 V, the value must be multiplied by a factor
of 10. Next, as described in chap. 6.5.2.4 on page 38 - a correction factor which is defi ned as a constant at
the beginning of the sketch by the fl oat. For output to the OLED display or serial monitor, we have the fl oa-
ting point numbers UMess_10bit and convert UMESS_18bit to corresponding strings. The values are updated
approximately in the secondary cycle.

Examples 43

6.6 IoT-example

Control your IoT brick via your smartphone or any other WiFi-enabled device and discover new possibilities.
Program your small website and realize an own control centre.

You will learn...

...how to synchronize the time and date with the internet (example 6.6.2)

...how to import the data of the temperature and humidity sensor (example 6.6.3)

...how to request the current Dollar exchange rate from the internet (example 6.6.4)

Later (see example 6.6.5) you will learn how to program a small website as the basis for your IP measurement
central. Via the universal sensor adaptor (ALL-BRICK-0649) you can connect various sensors in an easy way.
Last but not least you will learn how to control LEDs via the internet. This is a basic feature which is needed
in various applications of home automation.

Because of the simple network integration of the IoT brick, there are a lot of new possibilities.

Access Point / RouterIoT Brick mit
integriertem WLAN-Modul Internet

IP-Adresse wird dynam
isch zug

ew
eisen

Geräte mit
WLAN-Konnektivität

Hotspot

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

GPIO3
ADC

micro USB

18 bit

10 bitGPIO1
(Rx)

(10:1)

I2C, max 20V

(Tx) GPIO0 RESET int, max 10V

SDA SCL 5V GND

IoT Brick

WLAN: Name -57 dBm
CONNECTED
IP: 192.168.1.123
GW: 192.168.1.254
NET: 255.255.255.0

Sensoren

192.168.1.123

Figure 43: The IoT brick in the network

The big advantage of the ESP-12-F module - which is integrated in the IoT brick - compared to the Arduino
is the networking possibility thanks to the WiFi module. The ESP 8266 micro controller can be embedded
easily into an existing WiFi network. The IP address is normally allocated dynamically. The hotspot can be the
router of your local networks or your smartphone.

All of the IoT examples need an internet connection, that´s why you will see the following symbol:

In the examples 6.6.5 and 6.6.6 you can access the webserver which is integrated into the IoT brick. Theore-
tically also via internet if you can set up your network for this case. The keywords here are port-forwarding
and fi rewall. Standard routers normally offer the possibility to forward the specifi c access from the internet
to an internal port. This internal port is actually the IoT brick with its local IP address. It is required that your
fi rewall allows this kind of access from the "outside". You can fi nd further information about the relevant
confi gurations of your router in the documentation or on the internet.

44 Examples

6.6.1 Configuring the IoT brick as WiFi client

 Open the sketch in the Arduino IDE: Beispiel_6.6.1.ino. You have to integrate the following
header files: ESP8266WiFi.h and SSD1306Wire.h.In case you have not yet installed the libraries, go
back to chapter 5.2.1 on page 16 and install them.

If you want to communicate with your IoT brick via WiFi, you have to integrate it into your local network fist.
You will need the WiFi name (calles SSID) of your access point or router and the password. Since there is no
possibility to type in the information manually, we have to consign the access data in our sketch:

Search the green lines at the beginning of the sketch file and replace mein_wlan_name by the name (SSID)
of your WiFi and instead of mein_wlan_passwort enter your corresponding password (quotes must remain)

Programmausschnitt

//Insert the WiFi name (SSID) here:
const char* ssid = "mein _ wlan _ name";
//Insert your WiFi password here:
const char* password = "mein _ wlan _ passwort";
…
void setup() {
…
}

In the void loop() funktion, you can see how the following strings are assembled and line by line how they
are prepared to display with the command display.drawString(x,y,"String"). The following functions are used
to investigate the parameter values.

wlan_oled (WiFi name and strength), funktion WiFi.SSID() and WiFi.RSSI().

• state (link state), Funktion WiFi.state

• ip_oled (IP adress of the IoT brick), Funktion WiFi.localIP()[x]

• gw_oled (gateway-IP), funktion WiFi.gatewayIP()[x]

• mask_oled (sub mask), funktion WiFi.subnetMask()[x]

The output is finally done with the command display.display();

Parallel to this, the network connection information is also displayed on the serial monitor of your computer.
To open the serial monitor, just click on the magnifying glass symbol (refer to chap. 5.2.3 on page 20).

Examples 45

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

WLAN: Name -57 dBm
CONNECTED
IP: 192.168.1.123
GW: 192.168.1.254
NET: 255.255.255.0

Local IP address of the IoT brick
(allocated via DHCP)

WiFi name (SSID) and fi eld strenght (RSSI) in dBm

Connectivity status

IP address of the gateway

Subnet mask

(All of the values on the displays are only examples.)

Figure 44: Brick circuit of the WiFi client confi guration

 The WiFi confi guration can also be displayed by pushing the button GPIO0
(fi gure 44)!

46 Examples

6.6.2 Time from the internet

 Open the following sketch in the Arduino IDE: Beispiel_6.6.2.ino. You have to integrate the
following header files: ESP8266WiFi.h, SSD1306Wire.h, TimeLib.h and NtpClientLib.h.
In case you have not yet installed the libraries, go back to chapter 5.2.1 on page 16 and install them.

For this example, you have to enter your WiFi name (SSID) and the corresponding password in the example
program first. To do so follow the instructions as in chap. 6.6.1 . On the internet, there are so-called “time
servers”, which can be accessed via NTP (Network-Time-Protocol) to determine the current time and date.
Via the domain pool.ntp.org everyone can access a free pool of time servers. To process the informa-
tion transmitted by the time server, we use predefined functions NtpClientLib.h. in the libraries of
this exercise. We use an OLED-display to visualize the data.

program sample

…
void setup() {
…
//if the WiFi is connected, connect to the NTP time server
{
 NTP.begin("pool.ntp.org", 1, true); ////connect to the NTP time server
 NTP.setInterval(63); //syncronize every 63 seconds
 }

NTP.onNTPSyncEvent([](NTPSyncEvent _ t event) {
 ntpEvent = event;
 syncEventTriggered = true; //connected to the time server
 });
…
}

void loop() {
…
 String time = NTP.getTimeStr(); //save the time of day in the variable time
 String date = NTP.getDateStr(); //save the date in the variable date
 display.clear();
 display.setTextAlignment(TEXT _ ALIGN _ LEFT);
 display.setFont(ArialMT _ Plain _ 24);
 display.drawString(15, 5, time); //prepare the output of the time of day
 display.drawString(5, 35, date); //prepare the output of the date
 display.display(); //update the OLED display
…
}

As soon as the WiFi connection is established, the function NTP.begin("pool.ntp.org", 1,
true); makes the connection to the NTP server. This can take some seconds. The first parameter assigns
the URL to the time server pool, the second one is the deviation of our time zone to the “Universal Time
Coordinated” (UTC) of +1 hour and the true ” in the third parameter indicates that in our time zone we
switch between summer and winter time.. defines the interval in seconds in which the synchronization with
the NTP server should be updated and syncEvent Triggered = true reports a successful synchroniza-
tion with the NTP server.

Examples 47

In void loop() the NTP.getTimeStr() and the NTP.get DateStr() functions are used to read
the time/date as a string and prepares it for output. The actual output on the OLED display is done with-
display.display();. display.clear(); is also important in this example, in order to clear the
display and not to just override it in every loop pass.

Parallel to the display on the OLED display the output is also send to the serial monitor of your computer.
To open the serial monitor, simply click the magnifying glass symbol (see chap. 5.2.3 on page 20). Beside the
time and date other information like summer or winter time, the time elapsed since the initial synchroniza-
tion (uptime) and the time of the initial synchronization is displayed on the serial monitor.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

23:55:00
31/12/2016

WLAN: Name -57 dBm
CONNECTED
IP: 192.168.1.123
GW: 192.168.1.254
NET: 255.255.255.0

Figure 45: Brick circuit of the time from the internet confi guration

TIPP: The connection status of the IoT brick can always be displayed by pushing the button GPIO0 (see fi gure
44)!

?

48 Examples

6.6.3 Measuring temperature and humidity

 open the sketch following in the Arduino IDE Beispiel_6.6.3.ino. You have to integrate the
following header fi les: ESP8266WiFi.h, SSD1306Wire.h, TimeLib.h, NtpClientLib.h and
DHT.h. If you do not already have the appropriate libraries installed, go to chap. 5.2.1 on page 16 and get
this done fi rst.Also for this example you must fi rst enter your WiFi name (SSID) and the corresponding pass-
word in the sample program. Go to as in chap. 6.6.1 described.For temperature and humidity measurement,
we use the widely used combination sensor of the type DHT11, for which there is already a library (DHT.h)
and examples.In addition, there are many different sensors, for example from the Arduino-World, such as:

• temperature sensors • gas-sensor

• infrared light barrier • hall-sensor

• motion detector (IR sensor) • shock sensor

• light sensor (LDR) • touch sensitive button

The universal sensor adapter brick (ALL-BRICK-0649) allows you to simply connect numerous commercially
available sensors. For many sensors there are already examples and libraries, so that these can also be easily
integrated into own projects.

 First put the bricks together as shown. Pay attention to the correct connection of the supplied
DHT11 sensor. Insert the sensor exactly as shown in fi g. 46 to the far left in the lower 5-pin
connector of the sensor adapter brick. The label "5V" on the sensor must be at the far left of
the socket marked "5V" otherwise the sensor and the IoT brick are irreversibly damaged.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

18:00:00
24/12/2016
22.00°C
19%

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

GND 1 2 5V

Externer Sensor Adapter dreifach

3

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

A
LL

N
E

T

+5
V

G
N

D
I/O

B
24

_1

WLAN: Name -57 dBm
CONNECTED
IP: 192.168.1.123
GW: 192.168.1.254
NET: 255.255.255.0

GPIO14

the digital sensor data is transmitted via
data pin 1 of the sensor adapter brick on
GPIO14 of the IoT Brick

 Fig. 46: Brick circuit meassure temperature and humidity

Examples 49

Tip: The connection status of the IoT Brick can be displayed at any time by pressing the GPIO0 button

(see also fig. 44).

program sample

#define DHT _ TYPE DHT11 // define sensortype: DHT11
const int DHT _ PIN = 14; //data pipe of the sensor to GPIO4 of the IoT Brick
char temp[20]; //define string variable for the temperature
char humi[20]; //define string variable for the humidity

DHT dht(DHT _ PIN, DHT _ TYPE); //variable of type DHT

…
void setup() {
…
 dht.begin(); //initialize sensor
}

void loop() {
…
 if (counter%1000==0){ //Check the sensor approximately once per second
 float t = dht.readTemperature(); //Read Temperature (Celsius)
 float h = dht.readHumidity(); //Read the humidity

 sprintDouble(temp,t,2); //Convert temp with 2 decimal places to string
 sprintDouble(humi,h,0); //Convert humidity without decimal to string
 strcat(temp," °C"); //add °C to string
 strcat(humi," %"); //add % character to string

 }
 display.drawString(5, 30, temp); //Prepare temperature output
 display.drawString(5, 45, humi); //Prepare humidity output
 display.display(); //update OLED display
…
}

At the beginning of the sketch, the sensor type DHT11 and the data line GPIO pin (here GPIO4) are defined.
A special variable is the type DHT, with the help of which the sensor is initialized in void setup()

But now for the actual measurement in the section void loop (). With the two functions calls off the sensor
library dht.readTemperature() and dht.readHumidity() the temperature and the humidity are read from the
sensor and stored in the two floating point variables t and h. With the help function sprint Double () the
floating-point numbers are converted in strings with the desired number of decimals and the string opera-
tion strcat () adds the unit to the string.

In addition to the values for temperature and humidity, the display is supplemented with time and date– as
already shown in exercise 6.6.2. The actual output of all values to the OLED display is as usual with the com-
mand display.display();.

Parallel to this, the output is also on the serial monitor of your computer. To open the serial monitor, just
click on the magnifying glass symbol of the Arduino IDE (see chap. 5.2.3 on page 20) In this example, the
output of example 6.6.2 was supplemented by temperature and humidity.

50 Examples

By adapting the slot and de sketch numerous sensors on the market can be connected.

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

3-pin connector strip with one data pin

Green LED: 5 V ok.
The brick generates a stabilized 5 V voltage to
supply the sensors, so a connection to 9 V supply

4-pin connector strip with two data pins

5-polige Buchsenleiste für Sensoren mit bis zu drei Daten-Pins.

 Fig. 47 Connection options for "Sensor-Adapter-Brick dreifach"

 Please take care of the right connection to the adapter brick. If you are not sure, refer to the docu-
mentation of the sensor. Otherwise there is a risk of irreversibly damaging the sensor and / or IoT
brick!

Dollar exchange rate from the internet

 open the sketch following in the Arduino IDE: Beispiel_6.6.4.ino. You have to integrate the
following header fi les: ESP8266WiFi.h, SSD1306Wire.h, TimeLib.h, NtpClientLib.h and
CurrencylayerClient.h. If you do not already have the appropriate libraries installed, go to chap.
5.2.1 on page 16 and get this done fi rst.

Also for this example you must fi rst enter your WiFi name (SSID) and the corresponding password in the
sample program Go to as in chap. 6.6.1 described.

In order to retrieve the dollar exchange rate (EUR-USD) from the internet you need a special library "Brick-
ESP8266 ", which you can download at http://www.brickrknowledge.de/downloads . Unless you have al-
ready installed all libraries in chap. 5.2.1, please install them fi rst as discribed in chap. 5.2.1.2.3 on page 19.

program sample

#include <CurrencylayerClient.h>
...

if(counter%5000==0){ //update exchange rate approximately every 5 seconds
 currencylayer.getLastChannelItem();
 counter = 0;
 }
display.setTextAlignment(TEXT _ ALIGN _ LEFT);
display.setFont(ArialMT _ Plain _ 16);
display.drawString(0, 45, currencylayer.getFieldValue(0));
display.setTextAlignment(TEXT _ ALIGN _ RIGHT);
display.drawString(127, 45, " EUR/USD");
display.display();
…

In this example, we get the current dollar rates from the internet to calculate how much euro I have to pay
for a dollar (or vice versa).

EUR = USD * exchange rate

Examples 51

To get the conversion rate, we call the function currencylayer.get- LastChannelItem (). The time interval for
updating can be controlled over the counter in the If statement if (counter% 5000 == 0) The display is for-
matted as usual – However, the call currencylayer.getFieldValue (0) is important.. Only at this position, the
dollar rate rounded to 4 decimals is available as a string in the sketch.

In addition to the current conversion rate, the display is also supplemented with time and date - as already
showed in exercise 6.6.2. The actual output of all values to the OLED display is done as usual with the com-
mand display.display ()..

Parallel to this, the output is also on the serial monitor of your computer. To open the serial monitor, just
click the magnifying glass symbol of the Arduino IDE (see chap. 5.2.3 on page 20) The output of example
6.6.2 was supplemented by some status messages.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

23:59:59
31/12/2016

1.0523 EUR/USD

WLAN: Name -57 dBm
CONNECTED
IP: 192.168.1.123
GW: 192.168.1.254
NET: 255.255.255.0

Fig. 48 Brick circuit dollar exchange rate from the internet

TIP:The connection status of the IoT brick can always be displayed by pushing the button GPIO0 (see fi gure
44)!

52 Examples

6.6.4 My fi rst website

 open the following sketch in the Arduino IDE: Beispiel_6.6.5.ino. You have to integrate the
following header fi les: ESP8266WiFi.h, SSD1306Wire.h, TimeLib.h, NtpClientLib.h,
ESP8266WebServer.h and DHT.h. If you do not already have the appropriate libraries installed, go to
chap. 5.2.1 on page 16 and get this done fi rst.

Also for this example you must fi rst enter your WiFi name (SSID) and the corresponding password in the
sample program.

In this example, we will build a simple website that will give us time, date, temperature and humidity.The
basis for each website is Hypertext Markup Language, abbreviated: HTML. You can use the WYSIWYG HTML
editor to code your website. You can download various free HTML editors, e.g., NVU for Windows, Linux
(see: www.nvu.com) or BlueGriffon for MAC OS X (see: www.bluegriffon.org).

HTML basics are useful for this exercise. You can fi nd comprehensive HTML basics in the frame of the web
project SELFHTML at www.selfhtml.org.

The brick circuit and the sketch of this exercise are based on the example 6.6.3. The WiFi status can be dis-
played by pushing the button GPIO0 (fi gure 44)!

 First put the bricks together as shown in fi g. 49, otherwise the sketch can not be loaded correctly.
Be sure to connect the supplied DHT11 sensor correctly. Insert the sensor exactly as shown in fi g.
46 to the far left in the lower 5-pin connector of the sensor adapter brick The label "5V" on the
sensor must be at the far left of the socket marked "5V" otherwise the sensor and the IoT Brick are
irreversibly damaged.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

14:00:00
14/02/2017
24.00°C
17%

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

GND 1 2 5V

Externer Sensor Adapter dreifach

3

GND 1 5V

GND 1 2 5V

GND 1 2 35V

Externer Sensor Adapter dreifach

1
2

3

9V

9V

A
LL

N
E

T

+5
V

G
N

D
I/O

B
24

_1

 Fig. 49: Brick circuit"My fi rst website"

Examples 53

program sample

…
ESP8266WebServer server(80); //start web server on port 80
…
void setup() {
…
//when a browser directly accesses the root directory,
//execute handleRoot (see below).
 server.on("/", handleRoot);
 server.begin(); //from now on, the server listens for HTTP requests
 Serial.println("HTTP server started");
}

void loop() {

 server.handleClient(); //handle the HTTP request
…
}

//the handleRoot () function is used to deliver the site
//as soon as a request arrives from a browser
void handleRoot() {
 String content;
 String time _ web = NTP.getTimeStr();
 String date _ web = NTP.getDateStr();
 String temp _ web = temp;
 String humi _ web = humi;
 content = "<!DOCTYPE html>";
 content += "<html>";
 content += "<head>";
 //next line is important for the degree character "°" to be displayed correctly
 content += "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\">";
 content += "<title>Meine erste IoT Brick-Website</title>";
 content += "</head>";
 content += "<body>";
 content += "<h1> Hello World! </h1>";
 content += "<p>Das ist eine sehr einfache Website von deinem IoT Brick, die
 Datum, Uhrzeit, Temperatur und Feuchtigkeit anzeigt.</p>";
 content += "<h2>Datum: "+date _ web+"</h2>";
 content += "<h2>Uhrzeit: "+time _ web+"</h2>";
 content += "<h2>Temperatur: "+temp _ web+"</h2>";
 content += "<h2>Feuchte: "+humi _ web+"</h2>";
 content += "<p>Durch Neuladen der Website können die Werte jederzeit aktuali-
 siert werden.</p>";
 content += "</body>";
 content += "</html>";
 server.send(200, "text/html", content);
}

At the beginning of the sketches, the web server is started and standard port 80 is assigned for queries via
HTTP (eg:Http://www.brickrknowledge.com). As soon as you type the local IP address of your IoT brick in
your browser with prefixed http: //, (eg http://192.168.1.153), you access the root directory of your web server
so that the handleRoot () function is called. As you may have already read on www.selfhtml.org, the basic
structure of each website consists of so-called HTML-Tags. For each element, there is usually a start tag and
an end tag (to be recognized by the preceding slash "/"), which are embedded in the characteristic pointed
brackets.. For example<p>Normaler Absatz</p>. In the function handle root (), the entire content
of our website is saved in the string variable content.In order to make the whole picture clearer, the string

54 Examples

assignment of the HTML code is spread to several lines in the sketch. This includes all lines of the form con-
tent + = "...";

Another difficulty is that in the sketch programming start and end of a string with quotes (").Because the
HTML code also contains quotation marks, within the string for the correct coding a so-called Escape Se-
quence \ " is used for the quotation mark. The string itself is started and endet with a normal quotation
mark.

For example, the line ...

content += "<p>\"Dieser Absatz steht in Anführungszeichen\"</p>";

…equals the HTML code (UTF-8 coded):

<p>"Dieser Absatz steht in Anführungszeichen"</p>

Without the backslash at the two green marked places, the first green one would already close the string -
instead of the fourth in the line.

Finally, the server.send (200, "text / html", content); delivers the website.The first parameter defines the
HTTP status code, which is returned when the execution is successful. The code 200 means OK (the request
has been successfully processed).Next, the type of the delivered content is defined by the type "Text" and
the third parameter passed through the string with the content of the website.

Examples 55

6.6.5 Switch via website

 open the following sketch in the Arduino IDE: Beispiel_6.6.6.ino. You have to integrate
the following header files ESP8266WiFi.h, SSD1306Wire.h, TimeLib.h, NtpClientLib.h,
ESP8266WebServer.h and FS.h. If you do not already have the appropriate libraries installed, go to
chap. 5.2.1 on page 16 and get this done first.

Also for this example you must first enter your WiFi name (SSID) and the corresponding password in the
sample program. Go to as in chap. 6.6.1 described.

As a completion of the Internet of Things examples you will learn how to trigger an action on the IOT brick
or control GPIO pins. As the basis for the programming of the website, we need something more than basic
HTML tags this time. For this, we use the free CSS framework called Bootstrap, with which you can design
relatively simple responsive webdesigns, which then are optimized on mobile devices (such as your smart-
phone or tablet).There are forms, buttons, tables, navigation and a grid system for layouts as well as various
CSS classes and javascript components available. For further information on Bootstrap, go to https://www.
bootstrapworld.de.

So that you can get started with sketch programming, you have to do some assiduity work. We need to get
access to the SPIFFS file system (ESP8266 File System) of the IoT bricks, in order to be able to copy files there.
Proceed as follows:

1. Download the Arduino ESP8266 File Uploader from: https://github.com/esp8266/arduino-esp8266fs-
plugin/releases The sketch has been tested with the version 0.2.0 https://github.com/esp8266/arduino-
esp8266fs-plugin/releases/download/0.2.0/ESP8266FS-0.2.0.zip

2. Unzip the ZIP file to a directory on your computer. The file Esp8266fs.jar contained in it will by default
be extracted to the subdirectory \ ESP8266FS-0.2.0 \ ESP8266FS \ tool.

3. Check if there is already a directory "tools" on your computer in the path "Documents - Arduino"
available. If not, create a new folder named "tools" There you can install various tools, which can be
operated from the Arduino IDE, like our ESP8266 File Uploader

4. Create another subfolder named "ESP8266FS" in the "tools" directory..

5. In the directory "ESP8266FS" create another subfolder with the name "tool" (without "s" on end).

6. Copy the file esp8266fs.jar (see point 2) to the path "Documents -Arduino - tools - ESP8266FS - tool ".

7. Restart the Arduino IDE

8. The "ESP8266 Sketch Data Upload" option appears in the "Tools" menu.

9. If you have a project with SPIFFS File System support, all the files in the subdirectory "data" of the pro-
ject folder (standard path: "Documents - Arduino") are converted into a binary format and uploaded to
the SPI flash memory of the ESP8266 module.

10. Start the file upload in the "Tools" menu with the option "ESP8266 Sketch Data Upload". If the first
upload returns the message"SPIFFS Create", confirm with "Yes".

Uploading the files can take several minutes!

56 Examples

In this example, we will connect the double LED brick to GPIO14 (red LED) and GPIO13 (yellow LED) as shown.
Via two buttons on our website, we can then switch the LEDs on and off - theoretically worldwide. The OLED
display shows us additional time and date as we do already know from the previous exercises.

+
-

9V
1A

+9V

micro USB

IoT Brick

(SCLK)
GPIO14

(MOSI)
GPIO13

 18 bit

int, max. 10V
10 bit

n.c.

(MISO)
GPIO12

(SCL)

(SDA)
GPIO4

GPIO5

(Rx)

(Tx)
GPIO1

GPIO3
ADC (10:1)

GPIO0 RESET

I2C, max. 20V

USB-Verbindung zum Entwicklungsrechner

18:00:00
24/12/2016

LED

LED

GPIO14

GPIO13

Fig. 13: Brick circuit "Switching via website"

TIP: The connection status of the IoT brick can always be displayed by pushing the button GPIO0 (see fi gure
44)!

As mentioned, in this example we use advanced web technologies like the Bootstrap framework as well as
various CSS classes (CSS = Cascaded Style Sheets) and javascript components (Javascript is a scripts language
used frequently in websites). This means that the code is much more extensive than in the previous exercises,
but builds on this.. By asking how to use Bootstrap, CSS or javascript we recommend you to search the inter-
net accordingly or to buy a corresponding textbook, as this would burst the scope of this Brick'R'knowledge
guide.

TIP:

For those who already have good knowledge of HTML, bootstrap, CSS and javascript and even want to code
the website themselves, we have put the HTML code from the function handleRoot () in the plaintext ascom-
ment. For editing, you can download various free HTML editors such as NVU for Windows, Linux or MAC OS
X (see: www.nvu.com) or BlueGriffon (see: www.Bluegriffon.org).

 For this example to work correctly, you need to enable javascript in your browser.

 This is usually by default.

Examples 57

program sample

…
ESP8266WebServer server(80); //start web server on port 80
…
void setup() {
…
//when a browser directly accesses the root directory,
//execute handleRoot.
 server.on("/", handleRoot);
 // JS (Javascript)
 server.on("/js/jquery", handleJsJquery);
 server.on("/js/bootstrap", handleJsBootstrap);
 server.on("/js/bootstrap-switch", handleJsBootstrapSwitch);
 // CSS (Cascaded Style Sheets)
 server.on("/css/bootstrap", handleCssBootstrap);
 server.on("/css/bootstrap-switch", handleCssBootstrapSwitch);
 // Fig.s (Bilder)
 server.on("/img/bg.png", handleImgBg);
 server.on("/img/brklogo.png", handleImgLogo);

 // web server handles for the GPIO switching funktion
 server.on("/switch13-on", handleGpio13On);
 server.on("/switch13-off", handleGpio13Off);
 server.on("/switch14-on", handleGpio14On);
 server.on("/switch14-off", handleGpio14Off);

 server.begin();
 Serial.println("HTTP server started");
 setupPins();
}
…
//activate handle funktion for GPIO13
 void handleGpio13On() {
 digitalWrite(gpio13, dOn);
 server.send(200, "text/html", gpio13Name+" on");

Continued on next page ..

In the setup routine of our sketches we first begin with the numerous server.on () statements, which determi-
ne which functions are executed as soon as certain links are called in the browser.If, for example the IoT Brick
has the IP address 192.168.1.153, given from the DHCP server, then calling the address http://192.168.1.153/
img/ brklogo.png will cause the handleImgLogo () function to execute, which returns the Fig. filebrklogo.
png from the internal file system (SPIFFS) to the web server. Just like the log file any Java script, CSS or Fig.
file that is stored in the internal file system (SPIFFS) is required to have a file handle, so we can access it.In ad-
dition, handles are defined with which the web server responds when a browser request arrives to enable or
disable a GPIO.After that the web server is started with server.begin.. The handles themselves are defined at
the end of the sketche.. In the example code above, we have vicarious the handle function handleGpio13On
() to turn on the LED on GPIO13.

58 Examples

program sample (continuation)

…
void loop() {

server.handleClient(); //handle the HTTP request

//the handleRoot () function is used to deliver the web site
//as soon as a request arrives from a browser
void handleRoot() {
 String content;
 String network(ssid);
 content += "<html>";

 content += "<head>";
 //... various meta tags, that are not relevant to the understanding
 content += "<title>IoT Brick via WLAN "+network+" schalten</title>";
 content += "<link rel=\"stylesheet\" href=\"/css/bootstrap\">";
 content += "<link rel=\"stylesheet\" href=\"/css/bootstrap-switch\">";
 content += "<style>body{background-Fig.:url(/img/bg.png);margin:0;
 padding:20px;background-size:100% auto;background-repeat:no-repeat;
 font-family:\"Helvetica Neue\",Helvetica,Arial,sans-serif;
 font-size:14px;line-height:1.5;color:#333;background-color:#fff}
 .col-sm-2{margin-top:20px}.img-thumbnail{border:0}</style>";
 content += "</head>";

 content += "<body>";
 content += "<div class=\"container-fluid\">";
 content += "<div class=\"row\">";
 content += "<div class=\"col-sm-2\"><img class=\"img-thumbnail\"
 src=\"/img/brklogo.png\"></div>";
 content += "</div>";
 content += "<div class=\"row\">";
 content += "<div class=\"col-sm-2\"><input type=\"checkbox\" id=\"switch14\"
 data-label-text=\""+gpio14Name+"\" data-label-width=\"120\"></div>";
 content += "<div class=\"col-sm-2\"><input type=\"checkbox\" id=\"switch13\"
 data-label-text=\""+gpio13Name+"\" data-label-width=\"120\"></div>";
 content += "</div>";
 content += "</div>";
 content += "<script src=\"/js/jquery\"></script>";
 content += "<script src=\"/js/bootstrap\"></script>";
 content += "<script src=\"/js/bootstrap-switch\"></script>";
 content += "<script type=\"text/javascript\">";
 content += "$('input[type=\"checkbox\"]').bootstrapSwitch({onSwitchChange:
 function(){$.ajax({url:'/'+$(this).prop('id')+'-'+($(this).prop('checked')?
 'on':'off')});}});";
 content += "var setAdc=function(){$.ajax({url:'/adc'}).done(function(data)
 {data=data||{};if(data.hasOwnProperty('data')){$('#adc')
 .text(data.data);}}).fail(function(jqxhr,textStatus,error){})
 .always(function(){setTimeout(setAdc,1000);});};
 setAdc();";
 content += "</script>";
 content += "</body>";

 content += "</html>";
 server.send(200, "text/html", content); // HTTP statuscode 200 = ok
 }
}

Examples 59

In the function handle Root (), - as already practiced in example 6.6.5 - inside the string variable content the
content of our website is saved. Again, it should be noted that in the sketch-programming start and end of a
string must be marked with quotation marks at the top (").. Because the HTML code also contains quotation
marks, within the string for the correct coding a so-called Escape Sequence \ " is used for every the quotation
mark. For the sake of clarity, we write the code snippets cited in the following text in "plain text"..

With the style element <style>body{background-Fig.:url(/img/bg.png);… the back-
ground picture and other parameter, which change the look of the website, are defi ned In the body area,
you see nested Div elements that are structuring of the website.In a Div element, in turn, various elements
such as text, Fig., or forms are summarized and their properties are controlled. For example, the Div ele-
ment <div class="col-sm-2"><img class="img-thumbnail" src="/img/brklogo.
png"> integrates the logo.

The buttons for switching the LEDs on and off are controlled with an input element of type "checkbox".

The formatting is done by stylesheets from the bootstrap framework. Various script elements towards the
end of the sketch, specify the relative path to javascript fi les, which the site needs to access. The script ele-
ment <script type = "text / javascript"> fi nally leads to one longer section with JavaScript code, in which with
onSwitchChange the event of the actuation of a button is requested and the handle function is activated to
switch the LEDs on or off.

With the command server.send (200, "text / html", content); the site is dynamic delivered to the browser.

60 Brick Community

 media
networks. Boost your creativity!

By clicking on "Create" you can try out experiments from other users or show your own cool circuits.

More projects

7. Brick Community

Brick Community 61

By clicking on "Community" you can �nd all of our social media networks. Stay up-to-date!

Social Media

At "Community" you can also �nd out where our bricks were already. Do you have a nice picture of bricks in your town? Just send it
to us and soon you will �nde it on our website!

Worldwide

More projects

62 Brick Community

By clicking on "Bricks" you can
�nd all of the available bricks
with information and ideas for
experiments.

Even more bricks!

Each week we post a new blog
post. You can read about our
experiences at fairs, new
circuits, funny stories and
information of the world of
electronics.

Brick Blog

Brick sets overview 63

ALL-BRICK-0374

ALL-BRICK-0223

Basic Set

Advanced Set

The basic set contains 19 selected bricks to o�er a
fast and easy start into the world of Brick `R`
knowledge as well as the possibility to create
numerous circuits. The basic set is a perfect
support for kids gaining their rst experiences with
electronic and technical experiments.

Our Advanced Set contains 111 components that
allow you to build more complicated and complex
solutions. Thanks to the educational system,
knowledge can be gathered, so that not only
you but also our next generation can prot from it.
You can build individual circuits by plugging
di�erent bricks together. Simple as well as
complex electronic and technological topics can
be experienced in a totally new way. Due to the
open-source factor, you can create your own bricks
and develop your own solutions.
Brick'R'knowledge isn't all about basic electronic
engineering, also RF experiments can be realized,
which makes it a unique system worldwide.

8. Brick sets overview

64 Brick sets overview

ALL-BRICK-0414

Get in touch with digital electronics and start
understanding programming with the Arduino®
Nano, which is included in the kit. It is our rst kit with
digital components, such as 7-segment displays,
OLED display, D/A converter or I2C Bricks, comple-
mentary to all analog bricks. To get you started with
the popular microcontroller, we support you with
various programming examples.

Arduino Coding Set

ALL-BRICK-0398

The 7 Color Light Set contains 28 LED bricks in 7
di�erent colors to create stunning light e�ects in a
horizontal and vertical architecture. The red, yellow,
blue, orange, violet, green and warm white 1 watt
LEDs are perfect for individual lighting characters
or as a mobile lighting solution.

7 Color Light Set

Create your light show! The RGB Color Light Set
comes with four exible LED strips containing 36
LEDs in total that can be controlled with the
included infrared remote control. You can glue, cut
and connect the LED strips however you want. The
infrared remote control has 16 di�erent color keys
and 4 light programs.

RGB Color Light Set ALL-BRICK-0619

Brick sets overview 65

ALL-BRICK-0397

The DIY set goes even a step further. The included compo-
nents o�er a much more detailed insight into the brick
architecture and allow even the production of individual
bricks. The DIY set o�ers an enormous exibility for the maker
generation or for people creating individual bricks.

DIY Set

Programmable LED Set ALL-BRICK-0483

The kit contains 49 programmable and controllable RGB LED
bricks, each with two or three connectors and a conjunction-
brickfor Arduino management and power supply. Furthermo-
re, the Brick'R'knowledge Programmable LED Set includes an
Arduino adapter brick and an Arduino Nano. With this kit you
can realize colorful LED animations and other individual
ideas. And the best thing about it: by performing di�erent
projects, you can easily learn the programming of microcont-
rollers.

ALL-BRICK-0399Highpower LED Set

Powered by 1 Watts, each of the 50 High Power LED bricks
contained in the kit irradiate the whole surrounding area in
bright white. Build individual solutions in every imaginable
architecture and invent Brick nightlights, Brick table lamps or
any other creative illuminant. The power supply with 12V 8A
supports the intensive luminosity to o�er a stylish and cozy
atmosphere. The High Power LED Set 50 allows you to deal
with modern light design and simultaneously learn about
electronics.

66 Brick sets overview

Individual challenging projects within the MHz
frequency range can be created with the MHz DIY
set. Three di�erent grid and experimentation
boards, BNC sockets, P-SMP plugs and suitable
connectors make the kit perfect for any high
frequency experiment. The kit contains hermaph-
rodite connectors and a soldering jig for SMD
plugs to develop your own bricks or other compo-
nents for the Brick system.

MHz DIY Set ALL-BRICK-0457

Realize advanced and complicated experiments in the
high frequency range up to GHz frequencies. In additi-
on, the kit o�ers four diferent PCBs, P-SMP, SMA
sockets, P-SMP connectors and brick-specic hermaphro-
dite connectors. The GHz DIY Set is perfect for HAM
radio operators and fans of measuring.

GHz DIY Set ALL-BRICK-0458

ALL-BRICK-0484ALL-BRICK-0484

Das Solar Set von Brick’R’knowledge garantiert Experi-
mentierspaß für die ganze Familie und bringt Kindern
erneuerbare Energien auf spielerische Art und Weise
näher.
• Wie funktioniert eine Solarzelle?
• Wie speichert ein Akku Strom?
• Wie baut man ein Nachtlicht mit Bewegungsmelder?
Auf diese und weitere Fragen gibt das Solar Set Antwor-
ten. Mit diesem Set sind Sie und Ihre Kinder o�zielle
Mitglieder der Maker-Generation.

Solar Set

Brick sets overview 67

The Measurement Set Two enables you to measure the
voltage, current and other measured variables with
standard measuring instruments. It contains measuring
adapters (4mm) with closed end GND, measuring
adapters (4mm) inline red and measuring adapters
(4mm) with open end GND black.

Measurement Set Two ALL-BRICK-0638

The Measurement Set ONE enables you to measure the
voltage, current and other measured variables with
standard measuring instruments. The set contains
measuring adapters (3x2mm), with additional cable
clamp and measuring adapters (4mm) with a yellow
endpoint.

Measurement Set One ALL-BRICK-0637

ALL-BRICK-0630

The Logic Set is ideally suited for a quick start into the
digital circuit technology. While working with the
manual, which includes didactically structured examp-
les of circuits, students learn about the most important
digital circuits like adder, shift register and numerator.
The comprehensively equipped Logic Set provides
teachers with a practical basis for daily teaching.
Plugging the bricks together and experimenting with
them is fun and encourages building your own circuit
variants. The Logic Set’s scope of supply ranges from
easy logic bricks (AND, OR, NAND, NOR, XOR, XNOR,
NOT), to a variety of �ip �op bricks (D-, RS- and JK-type),
to an impulse brick (alternatively a debounced switch
for single pulses) up to a BCD counter brick with an
integrated 7 segment display. A wide range of LED
bricks, switch bricks and wire bricks make the set
complete.

Logic Set

ALLNET© GmbH Computersysteme
Maistrasse 2

D-82110 Germering

www.brickrknowledge.com

Telefon: +49 (0)89 894 222 921

Fax: +49 (0)89 894 222 33

info@brickrknowledge.com

Maker Store & Maker Space
Danziger Straße 22

D-10435 Berlin

www.maker-store.de

Telefon: +49 (0)30 473 756 80

service@allknow.de

www.brickrknowledge.de

